Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vera Weisbecker is active.

Publication


Featured researches published by Vera Weisbecker.


PLOS ONE | 2008

Australia's oldest marsupial fossils and their biogeographical implications.

Robin M. D. Beck; Henk Godthelp; Vera Weisbecker; Michael Archer; Suzanne J. Hand

Background We describe new cranial and post-cranial marsupial fossils from the early Eocene Tingamarra Local Fauna in Australia and refer them to Djarthia murgonensis, which was previously known only from fragmentary dental remains. Methodology/Principal Findings The new material indicates that Djarthia is a member of Australidelphia, a pan-Gondwanan clade comprising all extant Australian marsupials together with the South American microbiotheres. Djarthia is therefore the oldest known crown-group marsupial anywhere in the world that is represented by dental, cranial and post-cranial remains, and the oldest known Australian marsupial by 30 million years. It is also the most plesiomorphic known australidelphian, and phylogenetic analyses place it outside all other Australian marsupials. Conclusions/Significance As the most plesiomorphic and oldest unequivocal australidelphian, Djarthia may approximate the ancestral morphotype of the Australian marsupial radiation and suggests that the South American microbiotheres may be the result of back-dispersal from eastern Gondwana, which is the reverse of prevailing hypotheses.


Evolution | 2008

Ossification Heterochrony in the Therian Postcranial Skeleton and the Marsupial–Placental Dichotomy

Vera Weisbecker; Anjali Goswami; Stephen Wroe; Marcelo R. Sánchez-Villagra

Abstract Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Brain size, life history, and metabolism at the marsupial/placental dichotomy

Vera Weisbecker; Anjali Goswami

The evolution of mammalian brain size is directly linked with the evolution of the brains unique structure and performance. Both maternal life history investment traits and basal metabolic rate (BMR) correlate with relative brain size, but current hypotheses regarding the details of these relationships are based largely on placental mammals. Using encephalization quotients, partial correlation analyses, and bivariate regressions relating brain size to maternal investment times and BMR, we provide a direct quantitative comparison of brain size evolution in marsupials and placentals, whose reproduction and metabolism differ extensively. Our results show that the misconception that marsupials are systematically smaller-brained than placentals is driven by the inclusion of one large-brained placental clade, Primates. Marsupial and placental brain size partial correlations differ in that marsupials lack a partial correlation of BMR with brain size. This contradicts hypotheses stating that the maintenance of relatively larger brains requires higher BMRs. We suggest that a positive BMR–brain size correlation is a placental trait related to the intimate physiological contact between mother and offspring during gestation. Marsupials instead achieve brain sizes comparable to placentals through extended lactation. Comparison with avian brain evolution suggests that placental brain size should be constrained due to placentals’ relative precociality, as has been hypothesized for precocial bird hatchlings. We propose that placentals circumvent this constraint because of their focus on gestation, as opposed to the marsupial emphasis on lactation. Marsupials represent a less constrained condition, demonstrating that hypotheses regarding placental brain size evolution cannot be generalized to all mammals.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Skeletal development in sloths and the evolution of mammalian vertebral patterning

Lionel Hautier; Vera Weisbecker; Marcelo R. Sánchez-Villagra; Anjali Goswami; Robert J. Asher

Mammals show a very low level of variation in vertebral count, particularly in the neck. Phenotypes exhibited at various stages during the development of the axial skeleton may play a key role in testing mechanisms recently proposed to explain this conservatism. Here, we provide osteogenetic data that identify developmental criteria with which to recognize cervical vs. noncervical vertebrae in mammals. Except for sloths, all mammals show the late ossification of the caudal-most centra in the neck after other centra and neural arches. In sloths with 8–10 ribless neck vertebrae, the caudal-most neck centra ossify early, matching the pattern observed in cranial thoracic vertebrae of other mammals. Accordingly, we interpret the ribless neck vertebrae of three-toed sloths caudal to V7 as thoracic based on our developmental criterion. Applied to the unusual vertebral phenotype of long-necked sloths, these data support the interpretation that elements of the axial skeleton with origins from distinct mesodermal tissues have repatterned over the course of evolution.


Evolution & Development | 2008

Conserved relative timing of cranial ossification patterns in early mammalian evolution.

Marcelo R. Sánchez-Villagra; Anjali Goswami; Vera Weisbecker; Orin B. Mock; Shigeru Kuratani

SUMMARY We analyzed a comprehensive data set of ossification sequences including seven marsupial, 13 placental and seven sauropsid species. Data are provided for the first time for two major mammalian clades, Chiroptera and Soricidae, and for two rodent species; the published sequences of three species were improved with additional sampling. The relative timing of the onset of ossification in 17 cranial elements was recorded, resulting in 136 event pairs, which were treated as characters for each species. Half of these characters are constant across all taxa, 30% are variable but phylogenetically uninformative, and 19% potentially deliver diagnostic features for clades of two or more taxa. Using the conservative estimate of heterochronic changes provided by the program Parsimov, only a few heterochronies were found to diagnose mammals, marsupials, or placentals. A later onset of ossification of the pterygoid with respect to six other cranial bones characterizes therian mammals. This result may relate to the relatively small size of this bone in this clade. One change in relative onset of ossification is hypothesized as a potential human autapomorphy in the context of the sampling made: the earlier onset of the ossification of the periotic with respect to the lacrimal and to three basicranial bones. Using the standard error of scaled ranks across all species as a measure of each elements lability in developmental timing, we found that ossification of early, middle, and late events are similarly labile, with basicranial traits the most labile in timing of onset of ossification. Despite marsupials and placental mammals diverging at least 130 Ma, few heterochronic shifts in cranial ossification diagnose these clades.


Evolution | 2011

MONOTREME OSSIFICATION SEQUENCES AND THE RIDDLE OF MAMMALIAN SKELETAL DEVELOPMENT

Vera Weisbecker

The developmental differences between marsupials, placentals, and monotremes are thought to be reflected in differing patterns of postcranial development and diversity. However, developmental polarities remain obscured by the rarity of monotreme data. Here, I present the first postcranial ossification sequences of the monotreme echidna and platypus, and compare these with published data from other mammals and amniotes. Strikingly, monotreme stylopodia (humerus, femur) ossify after the more distal zeugopodia (radius/ulna, tibia/fibula), resembling only the European mole among all amniotes assessed. European moles also share extreme humeral adaptations to rotation digging and/or swimming with monotremes, suggesting a causal relationship between adaptation and ossification heterochrony. Late femoral ossification with respect to tibia/fibula in monotremes and moles points toward developmental integration of the serially homologous fore‐ and hindlimb bones. Monotreme cervical ribs and coracoids ossify later than in most amniotes but are similarly timed as homologous ossifications in therians, where they are lost as independent bones. This loss may have been facilitated by a developmental delay of coracoids and cervical ribs at the base of mammals. The monotreme sequence, although highly derived, resembles placentals more than marsupials. Thus, marsupial postcranial development, and potentially related diversity constraints, may not represent the ancestral mammalian condition.


Proceedings of the Royal Society B - Biological Sciences , 284 , Article 20170194. (2017) | 2017

Open data and digital morphology

Thomas Davies; Imran A. Rahman; Stephan Lautenschlager; John A. Cunningham; Robert J. Asher; Paul M. Barrett; Karl T. Bates; Stefan Bengtson; Roger B. J. Benson; Doug M. Boyer; José Braga; Jen A. Bright; Leon P. A. M. Claessens; Philip G. Cox; Xi-Ping Dong; Alistair R. Evans; Peter L. Falkingham; Matt Friedman; Russell J. Garwood; Anjali Goswami; John R. Hutchinson; Nathan Jeffery; Zerina Johanson; Renaud Lebrun; Carlos Martínez-Pérez; Jesús Marugán-Lobón; Paul O'Higgins; Brian D. Metscher; Maeva J. Orliac; Timothy Rowe

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Evolution & Development | 2011

Skeletal ossification and sequence heterochrony in xenarthran evolution

Lionel Hautier; Vera Weisbecker; Anjali Goswami; Frank Knight; Nikolay Kardjilov; Robert J. Asher

Previous analyses of how mammals vary in their ossification sequences have focused on monotremes, marsupials, and boreoeutherian placentals. Here, we focus on the sequence of cranial and postcranial ossification events during growth in the xenarthran skull and skeleton, including armadillos, anteaters, and sloths. We use two different methods to quantify sequence heterochrony: sequence analysis of variance (ANOVA) and event‐paring/Parsimov. Our results indicate that Parsimov is conservative and does not detect clear heterochronic shifts between xenarthran and boreoeutherian placentals. Sequence‐ANOVA performs better, but both methods exhibit sensitivity to the artifactual accumulation of ties. By controlling for ties and taking into account results that the methods have in common, our analysis suggests that xenarthrans significantly differ from other placentals by a late ossification of the sternum and an early ossification of the phalanges and pubis. We interpret these differences as showing that heterochrony plays a role in the skeletal development of xenarthrans, a change from previous studies that have emphasized the developmental homogeneity of the skeleton across placental mammals.


BMC Evolutionary Biology | 2009

Bats that walk: a new evolutionary hypothesis for the terrestrial behaviour of New Zealand's endemic mystacinids

Suzanne J. Hand; Vera Weisbecker; Robin M. D. Beck; Michael Archer; Henk Godthelp; Alan J. D. Tennyson; Trevor H. Worthy

BackgroundNew Zealands lesser short-tailed bat Mystacina tuberculata is one of only two of c.1100 extant bat species to use a true walking gait when manoeuvring on the ground (the other being the American common vampire bat Desmodus rotundus). Mystacina tuberculata is also the last surviving member of Mystacinidae, the only mammalian family endemic to New Zealand (NZ) and a member of the Gondwanan bat superfamily Noctilionoidea. The capacity for true quadrupedal terrestrial locomotion in Mystacina is a secondarily derived condition, reflected in numerous skeletal and muscular specializations absent in other extant bats. The lack of ground-based predatory native NZ mammals has been assumed to have facilitated the evolution of terrestrial locomotion and the unique burrowing behaviour of Mystacina, just as flightlessness has arisen independently many times in island birds. New postcranial remains of an early Miocene mystacinid from continental Australia, Icarops aenae, offer an opportunity to test this hypothesis.ResultsSeveral distinctive derived features of the distal humerus are shared by the extant Mystacina tuberculata and the early Miocene Australian mystacinid Icarops aenae. Study of the myology of M. tuberculata indicates that these features are functionally correlated with terrestrial locomotion in this bat. Their presence in I. aenae suggests that this extinct mystacinid was also adapted for terrestrial locomotion, despite the existence of numerous ground-based mammalian predators in Australia during the early Miocene. Thus, it appears that mystacinids were already terrestrially-adapted prior to their isolation in NZ. In combination with recent molecular divergence dates, the new postcranial material of I. aenae constrains the timing of the evolution of terrestrial locomotion in mystacinids to between 51 and 26 million years ago (Ma).ConclusionContrary to existing hypotheses, our data suggest that bats are not overwhelmingly absent from the ground because of competition from, or predation by, other mammals. Rather, selective advantage appears to be the primary evolutionary driving force behind habitual terrestriality in the rare bats that walk. Unlike for birds, there is currently no evidence that any bat has evolved a reduced capacity for flight as a result of isolation on islands.


Journal of Evolutionary Biology | 2013

Patterns and implications of extensive heterochrony in carnivoran cranial suture closure

Anjali Goswami; L. Foley; Vera Weisbecker

Heterochronic changes in the rate or timing of development underpin many evolutionary transformations. In particular, the onset and rate of bone development have been the focus of many studies across large clades. In contrast, the termination of bone growth, as estimated by suture closure, has been studied far less frequently, although a few recent studies have shown this to represent a variable, although poorly understood, aspect of developmental evolution. Here, we examine suture closure patterns across 25 species of carnivoran mammals, ranging from social‐insectivores to hypercarnivores, to assess variation in suture closure across taxa, identify heterochronic shifts in a phylogenetic framework and elucidate the relationship between suture closure timing and ecology. Our results show that heterochronic shifts in suture closure are widespread across Carnivora, with several shifts identified for most major clades. Carnivorans differ from patterns identified for other mammalian clades in showing high variability of palatal suture closure, no correlation between size and level of suture closure, and little phylogenetic signal outside of musteloids. Results further suggest a strong influence of feeding ecology on suture closure pattern. Most of the species with high numbers of heterochronic shifts, such as the walrus and the aardwolf, feed on invertebrates, and these taxa also showed high frequency of closure of the mandibular symphysis, a state that is relatively rare among mammals. Overall, caniforms displayed more heterochronic shifts than feliforms, suggesting that evolutionary changes in suture closure may reflect the lower diversity of cranial morphology in feliforms.

Collaboration


Dive into the Vera Weisbecker's collaboration.

Top Co-Authors

Avatar

Anjali Goswami

University College London

View shared research outputs
Top Co-Authors

Avatar

Karine Mardon

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Ariel E. Marcy

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Phillips

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda Nouwens

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan G. Fry

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge