Veronica I. Shubayev
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Veronica I. Shubayev.
Advanced Drug Delivery Reviews | 2009
Veronica I. Shubayev; Thomas R. Pisanic; Sungho Jin
Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a proinflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). Invivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use.
Spine | 2000
Tamaki Igarashi; Shinichi Kikuchi; Veronica I. Shubayev; Robert R. Myers
Study Design. This study tested the hypothesis that the 17-kDa form of tumor necrosis factor-alpha is the pathophysiologic agent expressed by herniated nucleus pulposus in vivo that is primarily responsible for the histologic and behavioral manifestations of experimental sciatica associated with herniated lumbar discs. Objective. The authors determined the molecular weight and concentration of active tumor necrosis factor-alpha in rat herniated disc and used exogenous tumor necrosis factor-alpha at the same molecular weight to study its neuropathologic effect on rat nerve root and dorsal root ganglion preparations in vivo. Summary of Background Data. Expressed by herniated nucleus pulposus in culture, tumor necrosis factor-alpha causes neuropathologic injury in nerve roots and neuropathic pain states in which mechanical allodynia is seen in response to peripheral stimuli. Methods. Western blotting was used to identify the molecular weight of the operative tumor necrosis factor-alpha protein form, and measures of optical density were used for semiquantitative determination of concentration. Plastic-embedded nerve roots and dorsal root ganglion were used for neuropathologic evaluation, and von Frey stimulation was used to quantify mechanical allodynia. Results. The 17-kDa form of tumor necrosis factor-alpha is expressed by herniated nucleus pulposus at a concentration of approximately 0.48 ng per herniated rat lumbar disc. Exogenous tumor necrosis factor-alpha applied in vivo to rat nerve roots produced neuropathologic changes and behavior deficits that mimicked experimental studies with herniated nucleus pulposus applied to nerve roots. Conclusions. The data reinforce other evidence that tumor necrosis factor-alpha is involved in mechanisms of neuropathic pain.
Drug Discovery Today | 2006
Robert R. Myers; W. Marie Campana; Veronica I. Shubayev
Neuroinflammation is a proinflammatory cytokine-mediated process that can be provoked by systemic tissue injury but it is most often associated with direct injury to the nervous system. It involves neural-immune interactions that activate immune cells, glial cells and neurons and can lead to the debilitating pain state known as neuropathic pain. It occurs most commonly with injury to peripheral nerves and involves axonal injury with Wallerian degeneration mediated by hematogenous macrophages. Therapy is problematic but new trials with anti-cytokine agents, cytokine receptor antibodies, cytokine-signaling inhibitors, and glial and neuron stabilizers provide hope for future success in treating neuropathic pain.
Brain Research | 2000
Veronica I. Shubayev; Robert R. Myers
Chronic constriction injury (CCI) to peripheral nerve causes a painful neuropathy in association with a process of axonal degeneration and endoneural remodeling that involves macrophage recruitment and local increase in extracellular proteases and tumor necrosis factor alpha (TNF-alpha). Cell surface activation of TNF-alpha from its transmembrane precursor, as well as sequestration of TNF-alpha receptors II and I, is performed by the zinc-dependent endopeptidase family of matrix metalloproteinases (MMPs). Among TNF-alpha-converting MMPs, basal lamina degrading gelatinases are thought to play a role in sciatic nerve injury. In the present study, we determined the forms of TNF-alpha involved in the development of CCI neuropathy in rats, using Western blot analysis, and the temporal correlation of TNF-alpha and TNFRI protein profiles with gelatinases activity at the site of peripheral nerve injury. We observed two peaks in TNF-alpha protein during the first week of CCI that correspond to previously reported peaks in painful behavior. We propose that the first peak at 6 h post-CCI is due to the local expression of the cytotoxic transmembrane 26 kDa TNF-alpha protein released by resident Schwann cells, mast cells and macrophages. This peak in TNF-alpha protein expression corresponds to an increase in gelatinase B (MMP-9) activity, which is greatly upregulated as early as 3 h following CCI to rat sciatic nerve. The second peak occurs at 5 days post-CCI, and may represent TNF-alpha protein released by hematogenously recruited macrophages. This peak is marked by the increase in active soluble 17 kDa TNF-alpha and by gelatinase A (MMP-2) upregulation. These observations suggest that there is a pathogenic role for the TNF-alpha-converting function of MMP-2 in painful CCI neuropathy. We conclude that severe nerve injury induces MMPs, TNF-alpha and TNFRI, which interactively control the privileged endoneurial environment and the pathogenesis of the painful neuropathies associated with the macrophage-dependent processes of Wallerian degeneration.
Journal of Neuroimmunology | 2001
Veronica I. Shubayev; Robert R. Myers
Tumor necrosis factor-alpha (TNF-alpha) is a key player in peripheral nerve injury. In the inflammatory chronic constriction injury (CCI) model of sciatic neuropathy, upregulation of TNF-alpha mRNA and protein at the site of nerve injury has been associated with pain. We now report the distribution of endogenous TNF-alpha protein and its receptors along normal and CCI-injured sciatic nerves, and within the corresponding lumbar dorsal root ganglia (DRG). Using Western blotting, TNF-alpha was found to be distinctly increased at the injury site, as well as in the axons just distal to the corresponding DRG. The TNF-alpha signal between the injury site and DRG (midaxonal) was induced between 2 and 5 days post-CCI, suggesting activation of TNF-alpha axonal transport. Endogenous TNF-alpha was localized in small-diameter, presumably nociceptive, and large-diameter, presumably mechanoceptive, DRG sensory neurons in both normal and CCI animals. Intraneural microinjection of biotin-labeled TNF-alpha showed specific axonal uptake at the injection site, as detected by avidin-biotin-peroxidase histochemistry, and confirmed by co-localization with neurobiotin tracer. In control animals, fast retrograde transport of biotinylated TNF-alpha to both L4 and L5 DRG neurons was apparent 6 h following injection. TNF receptors TNFRI and TNFRII co-localized with biotinylated TNF-alpha tracer along the nerve trunk, suggesting that TNF-alpha transport may be receptor-mediated. In animals with CCI neuropathy, uptake of biotinylated TNF-alpha by neuronal soma was inhibited. Instead, there was signal accumulation in the axons immediately distal to the DRG, and TNFRI and RII were increased at this same anatomic location. These findings highlight a dynamic process of TNF-alpha protein and receptor regulation throughout the peripheral neural axis that bears on both the normal function of DRG neurons and the pathogenesis of painful neuropathies.
Neuroscience Letters | 2003
Maria Schäfers; Linda S. Sorkin; C. Geis; Veronica I. Shubayev
Evidence indicates a role for tumor necrosis factor-alpha (TNF) in neuropathic pain. We correlated pain behavior in response to mechanical stimulation with immunoreactivity for TNF receptor (TNFR) 1 and 2 at 6, 24, 76 and 120 h following L5 and L6 spinal nerve ligation (SNL). Allodynia began in both L4 and L5 dermatomes within 6 h following SNL, peaking by 24 h. In L5 (injured) dorsal root ganglia (DRG), TNFR1 and TNFR2 levels displayed a bimodal increase, peaking at 6 and 120 h after SNL. In L4 (uninjured) DRG, TNFR1 and TNFR2 immunoreactivity peaked at 24 h returning to basal levels by 120 h. TNFR upregulation in injured and adjacent uninjured DRG neurons may be essential for mediating enhanced TNF effects and thus contribute to the development of pain-related behavior.
Molecular and Cellular Neuroscience | 2006
Veronica I. Shubayev; Mila Angert; Jennifer Dolkas; W. Marie Campana; Kai Palenscar; Robert R. Myers
Matrix metalloproteinase-9 (MMP-9) is an extracellular protease that is induced hours after injury to peripheral nerve. This study shows that MMP-9 gene deletion and neutralization with MMP-9 antibody reduce macrophage content in injured wild-type nerves. In mice with delayed Wallerian degeneration (WldS), MMP-9 and tumor necrosis factor alpha (TNFalpha) decline in association with the reduced macrophage recruitment to injured nerve that characterizes this strain of mice. We further determined that TNFalpha acts as an MMP-9 inducer by establishing increased MMP-9 levels after TNFalpha injection in rat sciatic nerve in vivo and primary Schwann cells in vitro. We found reduced MMP-9 expression in crushed TNFalpha knockout nerves that was rescued with exogenous TNFalpha. Finally, local application of MMP-9 on TNFalpha-/- nerves increased macrophage recruitment to the lesion. These data suggest that TNFalpha lies upstream of MMP-9 in the pathway of macrophage recruitment to injured peripheral nerve.
Journal of Controlled Release | 2012
Seong Deok Kong; Jisook Lee; Brian P. Eliceiri; Veronica I. Shubayev; Ratnesh Lal; Sungho Jin
Delivery of therapeutic or diagnostic agents across an intact blood-brain barrier (BBB) remains a major challenge. Here we demonstrate in a mouse model that magnetic nanoparticles (MNPs) can cross the normal BBB when subjected to an external magnetic field. Following a systemic administration, an applied external magnetic field mediates the ability of MNPs to permeate the BBB and accumulate in a perivascular zone of the brain parenchyma. Direct tracking and localization inside endothelial cells and in the perivascular extracellular matrix in vivo was established using fluorescent MNPs. These MNPs were inert and associated with low toxicity, using a non-invasive reporter for astrogliosis, biochemical and histological studies. Atomic force microscopy demonstrated that MNPs were internalized by endothelial cells, suggesting that trans-cellular trafficking may be a mechanism for the MNP crossing of the BBB observed. The silica-coated magnetic nanocapsules (SiMNCs) allow on-demand drug release via remote radio frequency (RF) magnetic field. Together, these results establish an effective strategy for regulating the biodistribution of MNPs in the brain through the application of an external magnetic field.
Neuroscience Letters | 2002
Veronica I. Shubayev; Robert R. Myers
Tumor necrosis factor-alpha (TNF alpha) is a key modulator of painful peripheral nerve injury. We have previously shown that a tracer of TNF alpha injected at the site of rat sciatic nerve injury undergoes retrograde axonal transport to the dorsal root ganglia (DRG). To further understand the role of TNF alpha in DRG, we injected rat L5 DRG with biotinylated TNF alpha, neurobiotin, or vehicle, and detected translocation of the biotin tag by avidin-biotin histochemistry. Biotinylated TNF alpha was transported intraaxonally toward the periphery of both normal and injured nerves. It also reached the dorsal horn of the spinal cord in injured rats, but not in control rats. These findings highlight a dynamic process of TNF alpha axonal transport in the peripheral neural axis, and help explain activation of central cytokines in the pathogenesis of painful neuropathy.
Molecular and Cellular Neuroscience | 2008
Hideo Kobayashi; Sharmila Chattopadhyay; Kinshi Kato; Jennifer Dolkas; Shinichi Kikuchi; Robert R. Myers; Veronica I. Shubayev
Matrix metalloproteinases (MMPs) emerge as modulators of neuropathic pain. Because myelin protects Abeta afferents from ectopic hyperexcitability and nociception from innocuous mechanical stimuli (or mechanical allodynia), we analyzed the role of MMPs in the development of mechanical allodynia through myelin protein degradation after rat and MMP-9-/- mouse L5 spinal nerve crush (L5 SNC). MMPs were shown to promote selective degradation of myelin basic protein (MBP), with MMP-9 regulating initial Schwann cell-mediated MBP processing after L5 SNC. Acute and long-term therapy with GM6001 (broad-spectrum MMP inhibitor) protected from injury-induced MBP degradation, caspase-mediated apoptosis, macrophage infiltration in the spinal nerve and inhibited astrocyte activation in the spinal cord. The effect of GM6001 therapy on attenuation of mechanical allodynia was robust, immediate and sustained through the course of L5 SNC. In conclusion, MMPs mediate the initiation and maintenance of mechanical nociception through Schwann cell-mediated MBP processing and support of neuroinflammation.