Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Verónica L. Morales is active.

Publication


Featured researches published by Verónica L. Morales.


Critical Reviews in Environmental Science and Technology | 2013

Transport and Fate of Microbial Pathogens in Agricultural Settings

Scott A. Bradford; Verónica L. Morales; Wei Zhang; Ronald W. Harvey; Aaron I. Packman; Arvind Mohanram; Claire Welty

An understanding of the transport and survival of microbial pathogens (pathogens hereafter) in agricultural settings is needed to assess the risk of pathogen contamination to water and food resources, and to develop control strategies and treatment options. However, many knowledge gaps still remain in predicting the fate and transport of pathogens in runoff water, and then through the shallow vadose zone and groundwater. A number of transport pathways, processes, factors, and mathematical models often are needed to describe pathogen fate in agricultural settings. The level of complexity is dramatically enhanced by soil heterogeneity, as well as by temporal variability in temperature, water inputs, and pathogen sources. There is substantial variability in pathogen migration pathways, leading to changes in the dominant processes that control pathogen transport over different spatial and temporal scales. For example, intense rainfall events can generate runoff and preferential flow that can rapidly transport pathogens. Pathogens that survive for extended periods of time have a greatly enhanced probability of remaining viable when subjected to such rapid-transport events. Conversely, in dry seasons, pathogen transport depends more strongly on retention at diverse environmental surfaces controlled by a multitude of coupled physical, chemical, and microbiological factors. These interactions are incompletely characterized, leading to a lack of consensus on the proper mathematical framework to model pathogen transport even at the column scale. In addition, little is known about how to quantify transport and survival parameters at the scale of agricultural fields or watersheds. This review summarizes current conceptual and quantitative models for pathogen transport and fate in agricultural settings over a wide range of spatial and temporal scales. The authors also discuss the benefits that can be realized by improved modeling, and potential treatments to mitigate the risk of waterborne disease transmission.


Journal of Hazardous Materials | 2012

Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns

Yuan Tian; Bin Gao; Yu Wang; Verónica L. Morales; Rafael Muñoz Carpena; Qingguo Huang; Liuyan Yang

Knowledge of the fate and transport of functionalized carbon nanotubes (CNTs) in porous media is crucial to understand their environmental impacts. In this study, laboratory column and modeling experiments were conducted to mechanistically compare the retention and transport of two types of functionalized CNTs (i.e., single-walled nanotubes and multi-walled nanotubes) in acid-cleaned, baked, and natural sand under unfavorable conditions. The CNTs were highly mobile in the acid-cleaned sand columns but showed little transport in the both natural and baked sand columns. In addition, the retention of the CNTs in the both baked and natural sand was strong and almost irreversible even after reverse, high-velocity, or surfactant flow flushing. Both experimental and modeling results showed that pH is one of the factors dominating CNT retention and transport in natural and baked sand. Retention of the functionalized CNTs in the natural and baked sand columns reduced dramatically when the system pH increased. Our results suggest that the retention and transport of the functionalized CNTs in natural sand porous media were mainly controlled by strong surface deposition through the electrostatic and/or hydrogen-bonding attractions between surface function groups of the CNTs and metal oxyhydroxide impurities on the sand surfaces.


Chemosphere | 2013

Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns.

Yuan Tian; Bin Gao; Verónica L. Morales; Hao Chen; Yu Wang; Hui Li

Sulfamethoxazole (SMX) and sulfapyridine (SPY), two representative sulfonamide antibiotics, have gained increasing attention because of the ecological risks these substances pose to plants, animals, and humans. This work systematically investigated the removal of SMX and SPY by carbon nanotubes (CNTs) in fixed-bed columns under a broad range of conditions including: CNT incorporation method, solution pH, bed depth, adsorbent dosage, adsorbate initial concentration, and flow rate. Fixed-bed experiments showed that pH is a key factor that affects the adsorption capacity of antibiotics to CNTs. The Bed Depth Service Time model describes well the relationship between service time and bed depth and can be used to design appropriate column parameters. During fixed-bed regeneration, small amounts of SMX (3%) and SPY (9%) were irreversibly bonded to the CNT/sand porous media, thus reducing the column capacity for subsequent reuse from 67.9 to 50.4 mg g(-1) for SMX and from 91.9 to 72.9 mg g(-1) for SPY. The reduced column capacity resulted from the decrease in available adsorption sites and resulting repulsion (i.e., blocking) of incoming antibiotics from those previously adsorbed. Findings from this study demonstrate that fixed-bed columns packed with CNTs can be efficiently used and regenerated to remove antibiotics from water.


Water Research | 2011

Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics

Verónica L. Morales; Wei Zhang; Bin Gao; Leonard W. Lion; James J. Bisogni; Brendan A. McDonough; Tammo S. Steenhuis

Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl(2) concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca(+2) which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes.


Water Research | 2012

Colloid retention at the meniscus-wall contact line in an open microchannel

Yuniati Zevi; Bin Gao; Wei Zhang; Verónica L. Morales; M. Ekrem Cakmak; Evelyn A. Medrano; Wenjing Sang; Tammo S. Steenhuis

Colloid retention mechanisms in partially saturated porous media are currently being researched with an array of visualization techniques. These visualization techniques have refined our understanding of colloid movement and retention at the pore scale beyond what can be obtained from breakthrough experiments. One of the remaining questions is what mechanisms are responsible for colloid immobilization at the triple point where air, water, and soil grain meet. The objective of this study was to investigate how colloids are transported to the air-water-solid (AWS) contact line in an open triangular microchannel, and then retained as a function of meniscus contact angle with the wall and solution ionic strength. Colloid flow path, meniscus shape and meniscus-wall contact angle, and colloid retention at the AWS contact line were visualized and quantified with a confocal microscope. Experimental results demonstrated that colloid retention at the AWS contact line was significant when the meniscus-wall contact angle was less than 16°, but was minimal for the meniscus-wall contact angles exceeding 20°. Tracking of individual colloids and computational hydrodynamic simulation both revealed that for small contact angles (e.g., 12.5°), counter flow and flow vortices formed near the AWS contact line, but not for large contact angles (e.g., 28°). This counter flow helped deliver the colloids to the wall surface just below the contact line. In accordance with DLVO and hydrodynamic torque calculations, colloid movement may be stopped when the colloid reached the secondary minimum at the wall near the contact line. However, contradictory to the prediction of the torque analysis, colloid retention at the AWS contact line decreased with increasing ionic strength for contact angles of 10-20°, indicating that the air-water interface was involved through both counter flow and capillary force. We hypothesized that capillary force pushed the colloid through the primary energy barrier to the primary minimum to become immobilized, when small fluctuations in water level stretched the meniscus over the colloid. For large meniscus-wall contact angles counter flow was not observed, resulting in less colloid retention, because a smaller number of colloids were transported to the contact line.


Journal of Nanoparticle Research | 2012

Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

Yu Wang; Bin Gao; Verónica L. Morales; Yuan Tian; Lei Wu; Jie Gao; Wei Bai; Liuyan Yang

Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.


Langmuir | 2013

Surfactant-Mediated Control of Colloid Pattern Assembly and Attachment Strength in Evaporating Droplets

Verónica L. Morales; Jean-Yves Parlange; Mingming Wu; Francisco J. Pérez-Reche; Wei Zhang; Wenjing Sang; Tammo S. Steenhuis

This study demonstrates that the pattern assembly and attachment strength of colloids in an evaporating sessile droplet resting on a smooth substrate can be controlled by adding nonionic solutes (surfactant) to the solution. As expected, increasing the surfactant concentration leads to a decrease in initial surface tension of the drop, σ(0). For the range of initial surface tensions investigated (39-72 mN m(-1)), three distinct deposition patterns were produced: amorphous stains (σ(0) = 63-72 mN m(-1)), coffee-ring stains (σ(0) = 48-53 mN m(-1)), and concentric rings (σ(0) = 39-45 mN m(-1)). A flow-displacement system was used to measure the attachment strength of the dried colloids. Characteristic drying regimes associated with the three unique pattern formations are attributed to abrupt transitions of contact line dynamics during evaporation. The first transition from slipping- to pinned-contact line was found to be a direct result of the competition between mechanical instability of the droplet and the friction generated by pinned colloids at the contact line. The second transition from pinned- to recurrent-stick-rip-slip-contact line was caused by repeated liquid film rupturing from evaporation-intensified surfactant concentration. Data from flow-displacement tests indicate that attachment strength of dried particles is strongest for amorphous stains (lowest surfactant concentration) and weakest for concentric rings (highest surfactant concentration). The mechanism behind these observations was ascribed to the formation and adsorption of micelles onto colloid and substrate surfaces as the droplet solution evaporates. The range of attachment forces observed between the colloids and the solid substrate were well captured by extended-DLVO interactions accounting for van der Waals attraction, electric double layer repulsion, and micelle-protrusion repulsion. Both empirical and theoretical results suggest that an increasingly dense layer of adsorbed micellar-protrusions on colloid and substrate surfaces acts as a physical barrier that hinders strong van der Waals attractive interactions at close proximity. Thereby, colloid stains dried at higher surfactant concentrations are more easily detached from the substrate when dislodging forces are applied than stains dried at lower surfactant concentrations.


Environmental Science & Technology | 2013

Quantification of Colloid Retention and Release by Straining and Energy Minima in Variably Saturated Porous Media

Wenjing Sang; Verónica L. Morales; Wei Zhang; Cathelijne R. Stoof; Bin Gao; Anna Lottie Schatz; Yalei Zhang; Tammo S. Steenhuis

The prediction of colloid transport in unsaturated porous media in the presence of large energy barrier is hampered by scant information of the proportional retention by straining and attractive interactions at surface energy minima. This study aims to fill this gap by performing saturated and unsaturated column experiments in which colloid pulses were added at various ionic strengths (ISs) from 0.1 to 50 mM. Subsequent flushing with deionized water released colloids held at the secondary minimum. Next, destruction of the column freed colloids held by straining. Colloids not recovered at the end of the experiment were quantified as retained at the primary minimum. Results showed that net colloid retention increased with IS and was independent of saturation degree under identical IS and Darcian velocity. Attachment rates were greater in unsaturated columns, despite an over 3-fold increase in pore water velocity relative to saturated columns, because additional retention at the readily available air-associated interfaces (e.g., the air-water-solid [AWS] interfaces) is highly efficient. Complementary visual data showed heavy retention at the AWS interfaces. Retention by secondary minima ranged between 8% and 46% as IS increased, and was greater for saturated conditions. Straining accounted for an average of 57% of the retained colloids with insignificant differences among the treatments. Finally, retention by primary minima ranged between 14% and 35% with increasing IS, and was greater for unsaturated conditions due to capillary pinning.


Journal of Hazardous Materials | 2012

Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media.

Yuan Tian; Bin Gao; Verónica L. Morales; Yu Wang; Lei Wu

This work investigated the effect of different surface modification methods, including oxidization, surfactant coating, and humic acid coating, on single-walled carbon nanotube (SWNT) stability and their mobility in granular porous media under various conditions. Characterization and stability studies demonstrated that the three surface modification methods were all effective in solubilizing and stabilizing the SWNTs in aqueous solutions. Packed sand column experiments showed that although the three surface medication methods showed different effect on the retention and transport of SWNTs in the columns, all the modified SWNTs were highly mobile. Compared with the other two surface modification methods, the humic acid coating method introduced the highest mobility to the SWNTs. While reductions in moisture content in the porous media could promote the retention of the surface modified SWNTs in some sand columns, results from bubble column experiment suggested that only oxidized SWNTs were retention in unsaturated porous media through attachment on air-water interfaces. Other mechanisms such as grain surface attachment and thin-water film straining could also be responsible for the retention of the SWNTs in unsaturated porous media. An advection-dispersion model was successfully applied to simulate the experimental data of surface modified SWNT retention and transport in porous media.


Bioresource Technology | 2015

Reverse engineering of biochar

Verónica L. Morales; Francisco J. Pérez-Reche; Simona M. Hapca; Kelly Hanley; Johannes Lehmann; Wei Zhang

This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n=102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios.

Collaboration


Dive into the Verónica L. Morales's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Gao

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Wei Zhang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Wang

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Yuan Tian

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge