Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Verónica Sancho is active.

Publication


Featured researches published by Verónica Sancho.


Obesity Surgery | 2005

Changes in glucagon-like peptide-1 (GLP-1) secretion after biliopancreatic diversion or vertical banded gastroplasty in obese subjects

Isabel Valverde; Jesús Puente; Antonio Martín-Duce; Luis A. Molina; Óscar Lozano; Verónica Sancho; Willy Malaisse; María Luisa Villanueva-Peñacarrillo

Background: Bariatric operations promote weight loss and improve glucose homeostasis. Glucagon-like peptide-1 (GLP-1) is considered as a possible mediator of the antidiabetic effects of such operations. Methods: The present study aimed to gain information on the time course for changes in glucose tolerance, as well as insulin, glucagon and GLP-1 secretion, during an oral glucose tolerance test (OGTT), in 31 obese patients examined 1, 3 and 6 months after Larrads biliopancreatic diversion (BPD) or 6 months after vertical banded gastroplasty (VBG). Results: A time-related progressive decrease in body weight coincided with lowering of plasma triglycerides, decrease of basal plasma glucose and its incremental area during OGTT, and reduction of basal plasma insulin together with an increase of its incremental area. The time-related decrease of plasma glucagon during OGTT was comparable before and after surgery. Both the basal plasma GLP-1 concentration and its incremental area during the OGTT increased strikingly after surgery, a steady-state situation being reached 3 months after surgery. The most striking differences between the somewhat older and less glucose-tolerant subjects of VBG compared to BPD after surgery, consisted in a decrease in cholesterol and LDL only observed in BPD and a much more pronounced increase in basal and incremental plasma GLP-1 in BPD. GLP-1, like glucagon, increased lipolysis, but failed to duplicate the lipogenetic action of insulin in isolated adipocytes obtained at the time of surgery. Conclusion: These findings support the postulated role of GLP-1, secreted by the hindgut, as a key mediator of the antidiabetic effects of bariatric operations.


Current Drug Delivery | 2011

Bombesin receptor-mediated imaging and cytotoxicity: review and current status

Verónica Sancho; Alessia Di Florio; Terry W. Moody; Robert T. Jensen

The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered.


Regulatory Peptides | 2005

Effect of GLP-1 on glucose transport and its cell signalling in human myocytes

Nieves González; Alicia Acitores; Verónica Sancho; Isabel Valverde; María Luisa Villanueva-Peñacarrillo

Glucagon-like peptide-1 (GLP-1) controls glucose metabolism in extrapancreatic tissues participating in glucose homeostasis, through receptors not associated to cAMP. In rat hepatocytes, activation of PI3K/PKB, PKC and PP-1 mediates the GLP-1-induced stimulation of glycogen synthase. We have investigated the effect of GLP-1 in normal human myocytes, and that of its structurally related peptides exendin-4 (Ex-4) and its truncated form 9-39 (Ex-9) upon glucose uptake, and the participation of cellular enzymes proposed to mediate insulin actions. GLP-1 and both exendins activated, like insulin, PI3K/PKB and p42/44 MAPK enzymes, but p70s6k was activated only by GLP-1 and insulin. GLP-1, Ex-4 and Ex-9, like insulin, stimulated glucose uptake; wortmannin blocked the action of GLP-1, insulin and Ex-9, and reduced that of Ex-4; PD98059 abolished the effect of all peptides/hormones, while rapamycin blocked that of insulin and partially prevented that of GLP-1. H-7 abolished the action of GLP-1, insulin and Ex-4, while Ro 31-8220 prevented only the Ex-4 and Ex-9 effect. In conclusion, GLP-1, like insulin, stimulates glucose uptake, and this involves activation of PI3K/PKB, p44/42 MAPKs, partially p70s6k, and possibly PKC; Ex-4 and Ex-9 both have GLP-1-like effect upon glucose transport, in which both share with GLP-1 an activation of PI3K/PKB--partially in the case of Ex-4--and p44/42 MAPKs but not p70s6k.


European Journal of Pharmacology | 2010

Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells

Terry W. Moody; Marc J. Berna; Samuel A. Mantey; Verónica Sancho; Lisa A. Ridnour; David A. Wink; Daniel Chan; Giuseppe Giaccone; Robert T. Jensen

Neuromedin B (NMB), a member of the bombesin family of peptides, is an autocrine growth factor for many lung cancer cells. The present study investigated the ability of NMB to cause transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells. By Western blot, addition of NMB or related peptides to NCI-H1299 human non-small cell lung cancer (NSCLC) cells, caused phosphorylation of Tyr(1068) of the EGF receptor. The signal was amplified using NCI-H1299 cells stably transected with NMB receptors. The transactivation of the EGF receptor or the tyrosine phosphorylation of ERK caused by NMB-like peptides was inhibited by AG1478 or gefitinib (tyrosine kinase inhibitors) and NMB receptor antagonist PD168368 but not the GRP receptor antagonist, BW2258U89. The transactivation of the EGF receptor caused by NMB-like peptides was inhibited by GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor), or transforming growth factor (TGF)alpha antibody. The transactivation of the EGF receptor and the increase in reactive oxygen species caused by NMB-like peptides was inhibited by N-acetylcysteine (NAC) or Tiron. Gefitinib inhibited the proliferation of NCI-H1299 cells and its sensitivity was increased by the addition of PD168368. The results indicate that the NMB receptor regulates EGF receptor transactivation by a mechanism dependent on Src as well as metalloprotease activation and generation of reactive oxygen species.


Peptides | 2011

Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs

Hirotsugu Uehara; Nieves González; Verónica Sancho; Samuel A. Mantey; Bernardo Nuche-Berenguer; Tapas K. Pradhan; David H. Coy; Robert T. Jensen

The mammalian bombesin (Bn)-receptor family [gastrin-releasing peptide-receptor (GRPR-receptor), neuromedin B-receptor (NMB receptor)], their natural ligands, GRP/NMB, as well as the related orphan receptor, BRS-3, are widely distributed, and frequently overexpressed by tumors. There is increased interest in agonists for this receptor family to explore their roles in physiological/pathophysiological processes, and for receptor-imaging/cytotoxicity in tumors. However, there is minimal data on human pharmacology of Bn receptor agonists and most results are based on nonhuman receptor studies, particular rodent-receptors, which with other receptors frequently differ from human-receptors. To address this issue we compared hNMB-/GRP-receptor affinities and potencies/efficacies of cell activation (assessing phospholipase C activity) for 24 putative Bn-agonists (12 natural, 12 synthetic) in four different cells with these receptors, containing native receptors or receptors expressed at physiological densities, and compared the results to native rat GRP-receptor containing cells (AR42J-cells) or rat NMB receptor cells (C6-glioblastoma cells). There were close correlations (r=0.92-99, p<0.0001) between their affinities/potencies for the two hGRP- or hNMB-receptor cells. Twelve analogs had high affinities (≤ 1 nM) for hGRP receptor with 15 selective for it (greatest=GRP, NMC), eight had high affinity/potencies for hNMB receptors and four were selective for it. Only synthetic Bn analogs containing β-alanine(11) had high affinity for hBRS-3, but also had high affinities/potencies for all GRP-/hNMB-receptor cells. There was no correlation between affinities for human GRP receptors and rat GRP receptors (r=0.131, p=0.54), but hNMB receptor results correlated with rat NMB receptor (r=0.71, p<0.0001). These results elucidate the human and rat GRP-receptor pharmacophore for agonists differs markedly, whereas they do not for NMB receptors, therefore potential GRP-receptor agonists for human studies (such as Bn receptor-imaging/cytotoxicity) must be assessed on human Bn receptors. The current study provides affinities/potencies on a large number of potential agonists that might be useful for human studies.


Cellular Signalling | 2009

Gastrointestinal growth factors and hormones have divergent effects on Akt activation

Marc J. Berna; Jose A. Tapia; Verónica Sancho; Michelle Thill; Andrea Pace; K. Martin Hoffmann; Lauro González-Fernández; Robert T. Jensen

Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCRs, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigated in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters [CCK, bombesin, carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations (pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations (nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory effects can be seen, which are mediated by different mechanisms.


Peptides | 2011

Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation.

Terry W. Moody; Verónica Sancho; Alessia Di Florio; Bernardo Nuche-Berenguer; Samuel A. Mantey; Robert T. Jensen

The effects of bombesin receptor subtype-3 (BRS-3) agonists were investigated on lung cancer cells. The BRS-3 agonist (DTyr(6), (Ala(11), Phe(13), Nle(14)) bombesin(6-14) (BA1), but not gastrin releasing peptide (GRP) or neuromedin B (NMB) increased significantly the clonal growth of NCI-H1299 cells stably transfected with BRS-3 (NCI-H1299-BRS-3). Also, BA1 addition to NCI-H727 or NCI-H1299-BRS-3 cells caused Tyr(1068) phosphorylation of the epidermal growth factor receptor (EGFR). Similarly, (DTyr(6), R-Apa(11), Phe(13), Nle(14)) bombesin(6-14) (BA2) and (DTyr(6), R-Apa(11), 4-Cl,Phe(13), Nle(14)) bombesin(6-14) (BA3) but not gastrin releasing peptide (GRP) or neuromedin B (NMB) caused EGFR transactivation in NCI-H1299-BRS-3 cells. BA1-induced EGFR or ERK tyrosine phosphorylation was not inhibited by addition of BW2258U89 (BB(2)R antagonist) or PD168368 (BB(1)R antagonist) but was blocked by (DNal-Cys-Tyr-DTrp-Lys-Val-Cys-Nal)NH(2) (BRS-3 ant.). The BRS-3 ant. reduced clonal growth of NCI-H1299-BRS-3 cells. BA1, BA2, BA3 and BRS-3 ant. inhibit specific (125)I-BA1 binding to NCI-H1299-BRS-3 cells with an IC(50) values of 1.1, 21, 15 and 750nM, respectively. The ability of BRS-3 to regulate EGFR transactivation in NCI-H1299-BRS-3 cells was reduced by AG1478 or gefitinib (EGFR tyrosine kinase inhibitors), GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor), N-acetylcysteine (anti-oxidant), Tiron (superoxide scavenger) and DPI (NADPH oxidase inhibitor). These results demonstrate that BRS-3 agonists may stimulate lung cancer growth as a result of EGFR transactivation and that the transactivation is regulated by BRS-3 in a Src-, reactive oxygen and matrix metalloprotease-dependent manner.


Journal of Molecular Endocrinology | 2012

Normalizing action of exendin-4 and GLP-1 in the glucose metabolism of extrapancreatic tissues in insulin-resistant and type 2 diabetic states

Paola Moreno; Bernardo Nuche-Berenguer; Irene Gutiérrez-Rojas; Alicia Acitores; Verónica Sancho; Isabel Valverde; Nieves González; María Luisa Villanueva-Peñacarrillo

Exendin-4 (Ex-4) mimics glucagon-like peptide-1 (GLP-1 or GCG as listed in the HUGO database), being anti-diabetic and anorectic, in stimulating glucose and lipid metabolism in extrapancreatic tissues. We studied the characteristics of Ex-4 and GLP-1 action, during prolonged treatment, on GLUTs expression (mRNA and protein), glycogen content (GC), glucose transport (GT), glycogen synthase a (GSa), and kinase (PI3K and MAPKs) activity, in liver, muscle, and fat of insulin-resistant (IR, by fructose) and type 2 diabetic (T2D, streptozotocin at birth) rats compared with normal rats. In both IR and T2D, the three tissues studied presented alterations in all measured parameters. In liver, GLP-1 and also Ex-4 normalized the lower than normal Glut2 (Slc2a2) expression and showed a trend to normalize the reduced GC in IR, and GLP-1, like Ex-4, also in T2D, effects mediated by PI3K and MAPKs. In skeletal muscle, neither GLP-1 nor Ex-4 modified Glut4 (Slc2a4) expression in either experimental model but showed normalization of reduced GT and GSa, in parallel with the normalization of reduced PI3K activity in T2D and MAPKs in both models. In adipose tissue, the altered GLUT4 expression in IR and T2D, along with reduced GT in IR and increased GT in T2D, and with hyperactivated PI3K in both, became normal after GLP-1 and Ex-4 treatment; yet, MAPKs, that were also higher, became normal only after Ex-4 treatment. The data shows that Ex-4, as well as GLP-1, exerts a normalizing effect on IR and T2D states through a distinct post-receptor mechanism, the liver being the main target for Ex-4 and GLP-1 to control glucose homeostasis.


Peptides | 2010

Pharmacology of putative selective hBRS-3 receptor agonists for human bombesin receptors (BnR): affinities, potencies and selectivity in multiple native and BnR transfected cells.

Verónica Sancho; Terry W. Moody; Samuel A. Mantey; Alessia Di Florio; Hirotsugu Uehara; David H. Coy; Robert T. Jensen

The orphan receptor, bombesin receptor subtype-3(BRS-3) is a G-protein-coupled receptor classified in the bombesin (Bn) receptor family because of its high homology (47-51%) with other members of this family [gastrin-releasing peptide receptor [GRPR] and neuromedin B receptor [NMBR]]. There is increasing interest in BRS-3, because primarily from receptor knockout studies, it seems important in energy metabolism, glucose control, insulin secretion, motility and tumor growth. Pharmacological tools to study the role of BRS-3 in physiology/pathophysiology are limited because the natural ligand is unknown and BRS-3 has low affinity for all naturally occurring Bn-related peptides. However, a few years ago a synthetic high-affinity agonist [dTyr(6),betaAla(11),Phe(13),Nle(14)]Bn-(6-14) was described but was nonselective for BRS-3 over other Bn receptors. Based on this peptide, in various studies a number of putative selective, high-potency hBRS-3 agonists were described, however the results on their selectivity are conflicting in a number of cases. The purpose of the present study was to thoroughly study the pharmacology of four of the most select/potent putative hBRS-3 agonists (#2-4, 16a). Each was studied in multiple well-characterized Bn receptor-transfected cells and native Bn receptor bearing cells, using binding studies, alterations in cellular signaling (PLC, PKD) and changes in cellular function(growth). Two peptides (#2, #3) had nM affinities/potencies for hBRS-3, peptide #4 had low affinity/potency, and peptide #16a very low (>3000 nM). Peptide#3 had the highest selectivity for hBRS-3 (100-fold), whereas #2, 4 had lower selectivity. Peptide #16as selectivity could not be determined because of its low affinity/potencies for all hBn receptors. These results show that peptide #3 is the preferred hBRS-3 agonist for studies at present, although its selectivity of only 100-fold may limit its utility in some cases. This study underscores the importance of full pharmacological characterization of newly reported selective agonists.


Biochimica et Biophysica Acta | 2013

Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor

Alessia Di Florio; Verónica Sancho; Paola Moreno; Gianfranco Delle Fave; Robert T. Jensen

Foregut neuroendocrine tumors [NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor (EGFR) by growth factors, gastrointestinal (GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid,BON, the somatostatinoma QGP-1 and the rat islet tumor,Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr(1068) EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs.

Collaboration


Dive into the Verónica Sancho's collaboration.

Top Co-Authors

Avatar

Robert T. Jensen

National Bureau of Economic Research

View shared research outputs
Top Co-Authors

Avatar

Isabel Valverde

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Nieves González

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Willy Malaisse

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Samuel A. Mantey

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Terry W. Moody

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tapas K. Pradhan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc J. Berna

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge