Vesna Sokol
University of Split
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vesna Sokol.
Journal of Physical Chemistry B | 2015
Perica Bošković; Vesna Sokol; Thomas Zemb; Didier Touraud; Werner Kunz
A very small concentration of NaBr is added to ternary, transparent, and thermodynamically stable mixtures of water, ethanol, and octanol. Measuring the electrical conductivity along lines with constant water to ethanol ratios reveals remarkable composition dependencies similar to those found in classical surfactant-based microemulsions. Indeed, light-scattering experiments along the same composition lines and additional surface tension measurements confirm the onset of aggregation and possibly direct, bicontinuous, and reversed structures in these surfactant-free systems such as in classical microemulsions.
RSC Advances | 2015
Marina Tranfić Bakić; Dijana Jadreško; Tomica Hrenar; Gordan Horvat; Josip Požar; Nives Galić; Vesna Sokol; Renato Tomaš; Sulejman Alihodžić; Mladen Žinić; Leo Frkanec; Vladislav Tomišić
New fluorescent calix[4]arene derivatives 1, 2, and 3 were synthesized by introducing phenanthridine moieties at a lower calixarene rim. It was shown that due to the prominent fluorescence of compounds 1 and 3, they could be considered as potential sensitive fluorimetric cation sensors. Complexation of the prepared compounds with alkali-metal cations was studied at 25 °C in acetonitrile–dichloromethane and methanol–dichloromethane solvent mixtures (φ = 0.5) by means of fluorimetric, spectrophotometric, potentiometric, and microcalorimetric titrations as well as NMR spectroscopy. The stability constants of the corresponding complexes were determined, as were the enthalpies and entropies of the complexation reactions. In addition, equilibrium constants of ion-pairing reactions between alkali-metal cations and several anions in the solvents used were measured conductometrically. It was found that the cation-binding affinity of ligand 1 with four phenanthridine subunits was much higher than that of 2 and 3, with the complex stabilities in all cases being significantly lower in methanol–dichloromethane mixture compared to that in acetonitrile–dichloromethane. These findings were thoroughly discussed by taking into account the determined thermodynamic complexation data, structural properties of the ligand and free and complexed cations, as well as the solvation abilities of the solvents examined. The conclusions made in that way were corroborated by the results of the molecular dynamics simulations of the systems studied. An attempt to get an insight into the possible structures of the alkali-metal cation complexes with ligand 1 was made by carrying out the corresponding density functional theory calculations.
Central European Journal of Chemistry | 2017
Ante Prkić; Antonija Jurić; Josipa Giljanović; Nives Politeo; Vesna Sokol; Perica Bošković; Mia Brkljača; Angela Stipišić; Carlos Fernandez; Tina Vukušić
Abstract Due to the simplicity of tea preparation (pouring hot water onto different dried herbs) and its high popularity as a beverage, monitoring and developing a screening methodology for detecting the metal content is very important. The concentrations of Cd, Ca, Cu, Fe, Pb, Mg and Mn in 11 different samples of sage (Salvia officinalis L.), linden (Tilia L.) and chamomile (Matricaria chamomilla L.) purchased at local herbal pharmacy were determined using electrothermal atomizer atomic absorption spectrometry (ETAAS) and flame atomizer atomic absorption spectrometry (FAAS). The concentrations determined were: Cd (0.012 – 0.470 mg kg−1), Ca (5209 – 16340 mg kg−1), Cu (22.01 – 33.05 mg kg−1), Fe (114.2 – 440.3 mg kg−1), Pb (0.545 – 2.538 mg kg−1), Mg (2649 – 4325 mg kg−1) and Mn (34.00 – 189.6 mg kg−1). Principal Component Analysis (PCA) was applied to identify factors (soil and climate) influencing the content of the measured elements in herbal samples. The proposed methodology developed in this work was successfully applied to the detection of metals in herbal samples. The analysis showed that the content of toxic metals in herbal teas was below the maximum dose recommended by the World Health Organization (WHO).
Central European Journal of Chemistry | 2018
Ante Prkić; Nives Politeo; Josipa Giljanović; Vesna Sokol; Perica Bošković; Mia Brkljača; Angela Stipišić
Abstract Due to the simplicity of tea preparation (pouring hot water onto different dried herbs) and its high popularity as a beverage, monitoring and developing a screening methodology for detecting the metal content is very important. The concentrations of Cd, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Hg, Na and Zn in 8 samples of green tea (Camellia sinesis) and in 11 samples chamomile (Matricaria chamomilla L.) purchased both at local herbal pharmacies and supermarkets were determined using electrothermal atomizer atomic absorption spectrometry (ETAAS) and flame atomizer atomic absorption spectrometry (FAAS). The found concentrations in chamomile were: Cd (0.008 – 284 mg kg−1), Ca (2.42 – 6.29%), Cr (0.91 – 6.92 mg kg−1), Cu (6.27 – 11.39 mg kg−1), Fe (133.5 – 534 mg kg−1), Pb (0.561 – 1.277 mg kg−1), Mg (2.27 – 3.73%), Mn (62.2 – 165.6 mg kg−1), Hg (0.660 – 1.346 μg kg−1), Na (0.91 – 1.28%) and Zn (63.37 – 108.5 mg kg−1), in green tea Cd (36.29 – 202.1 mg kg−1), Ca (2.77 – 6.40%), Cr (1.520 – 5.278 mg kg−1), Cu (9.354 – 22.56 mg kg−1), Fe (162.6 – 513.3 mg kg−1), Pb (1.808 – 4.770 mg kg−1), Mg (1.41 – 2.62 %), Mn (1.147 – 1.729 g kg−1), Hg (1.045 – 2.802 μg kg−1), Na (0.44 – 0.98%) and Zn (30.65 – 115.6 mg kg−1), respectively. Principal Component Analysis (PCA) was applied to identify factors (soil, climate and country of origin) influencing the content of the measured elements in herbal samples. The proposed methodology developed in this work was successfully applied to the detection of metals in herbal samples. The analysis showed that the content of toxic metals in green tea samples was significantly higher and very close to the maximum dose recommended by the World Health Organization (WHO).
Croatica Chemica Acta | 2005
Vesna Sokol; Ivo Tominić; Renato Tomaš; Marija Višić
Acta Chimica Slovenica | 2009
Vesna Sokol; Renato Tomaš; Ivo Tominić
Journal of Solution Chemistry | 2006
Vesna Sokol; Renato Tomaš; Marija Višić; Ivo Tominić
Croatica Chemica Acta | 2001
Renato Tomaš; Marija Višić; Ivo Tominić; Vesna Sokol
Journal of Solution Chemistry | 2005
Renato Tomaš; Ivo Tominić; Marija Višić; Vesna Sokol
Journal of Solution Chemistry | 2004
Renato Tomaš; Ivo Tominić; Marija Višić; Vesna Sokol