Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vibha Rani is active.

Publication


Featured researches published by Vibha Rani.


Molecular Genetics and Genomics | 2013

miRNA–transcription factor interactions: a combinatorial regulation of gene expression

S. Arora; R. Rana; Aastha Chhabra; Astha Jaiswal; Vibha Rani

Developmental processes require a precise spatio-temporal regulation of gene expression wherein a diverse set of transcription factors control the signalling pathways. MicroRNAs (miRNAs), a class of small non-coding RNA molecules have recently drawn attention for their prominent role in development and disease. These tiny sequences are essential for regulation of processes, including cell signalling, cell development, cell death, cell proliferation, patterning and differentiation. The consequence of gene regulation by miRNAs is similar to that by transcription factors (TFs). A regulatory cascade essential for appropriate execution of several biological events is triggered through a combinatorial action of miRNAs and TFs. These two important regulators share similar regulatory logics and bring about a cooperative action in the gene regulatory network, dependent on the binding sites present on the target gene. The review addresses the biogenesis and nomenclature of miRNAs, outlines the mechanism of action and regulation of their expression, and focuses on the combinatorial action of miRNAs and TFs for the expression of genes in various regulatory cascades.


Molecular and Cellular Biochemistry | 2012

DNA–protein interactions: methods for detection and analysis

Bipasha Dey; Sameer Thukral; Shruti Krishnan; Mainak Chakrobarty; Sahil Gupta; Chanchal Manghani; Vibha Rani

DNA-binding proteins control various cellular processes such as recombination, replication and transcription. This review is aimed to summarize some of the most commonly used techniques to determine DNA–protein interactions. In vitro techniques such as footprinting assays, electrophoretic mobility shift assay, southwestern blotting, yeast one-hybrid assay, phage display and proximity ligation assay have been discussed. The highly versatile in vivo techniques such as chromatin immunoprecipitation and its variants, DNA adenine methyl transferase identification as well as 3C and chip-loop assay have also been summarized. In addition, some in silico tools have been reviewed to provide computational basis for determining DNA–protein interactions. Biophysical techniques like fluorescence resonance energy transfer (FRET) techniques, FRET–FLIM, circular dichroism, atomic force microscopy, nuclear magnetic resonance, surface plasmon resonance, etc. have also been highlighted.


Applied Biochemistry and Biotechnology | 2011

Nanotechnology: Emerging Tool for Diagnostics and Therapeutics

Mainak Chakraborty; Surangna Jain; Vibha Rani

Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.


Journal of Microscopy | 2014

Cell‐death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques

Neha Atale; S. Gupta; Umesh C. S. Yadav; Vibha Rani

Apoptosis, a genetically programmed cellular event leads to biochemical and morphological changes in cells. Alterations in DNA caused by several factors affect nucleus and ultimately the entire cell leading to compromised function of the organ and organism. DNA, a master regulator of the cellular events, is an important biomolecule with regards to cell growth, cell death, cell migration and cell differentiation. It is therefore imperative to develop the staining techniques that may lead to visualize the changes in nucleus where DNA is housed, to comprehend the cellular pathophysiology. Over the years a number of nuclear staining techniques such as propidium iodide, Hoechst‐33342, 4’, 6‐diamidino‐2‐phenylindole (DAPI), Acridine orange–Ethidium bromide staining, among others have been developed to assess the changes in DNA. Some nonnuclear staining techniques such as Annexin‐V staining, which although does not stain DNA, but helps to identify the events that result from DNA alteration and leads to initiation of apoptotic cell death. In this review, we have briefly discussed some of the most commonly used fluorescent and nonfluorescent staining techniques that identify apoptotic changes in cell, DNA and the nucleus. These techniques help in differentiating several cellular and nuclear phenotypes that result from DNA damage and have been identified as specific to necrosis or early and late apoptosis as well as scores of other nuclear deformities occurring inside the cells.


Toxicology Letters | 2013

Tea and human health: the dark shadows.

Aditi Jain; Chanchal Manghani; Shrey Kohli; Darshika Nigam; Vibha Rani

Tea is one of the most popularly consumed beverage. Depending on the manufacturing process, different varieties of tea can be produced. The antioxidative and antimutagenic potential of tea in cardiovascular diseases, cancer and obesity have long been studied. These therapeutic and nutritional benefits of tea can be attributed to the presence of flavanoids. However, these flavanoids also have certain detrimental effects on human health when their consumption exceeds certain limits. The toxicity of these flavanoids can be attributed to the formation of reactive oxygen species in the body which causes damage to the DNA, lipid membranes etc. The aim of this review is to summarize briefly, the less studied evidences of various forms of toxicity associated with tea and its harmful effects on human health.


Current Cardiology Reviews | 2012

Transcription Factors in Heart: Promising Therapeutic Targets in Cardiac Hypertrophy

Shrey Kohli; Suchit Ahuja; Vibha Rani

Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. This is initially a compensatory mechanism but sustained hypertrophy may lead to heart failure. The growing knowledge of transcriptional control mechanisms is helpful in the development of novel therapies. This review summarizes the role of cardiac transcription factors in cardiac hypertrophy, emphasizing their potential as attractive therapeutic targets to prevent the onset of heart failure and sudden death as they can be converging targets for current therapy.


Bioinformation | 2009

High GC content: critical parameter for predicting stress regulated miRNAs in Arabidopsis thaliana.

Akaash Kumar Mishra; Seep Agarwal; Chakresh Kumar Jain; Vibha Rani

Plants like Arabidopsis thaliana are convenient model systems to study fundamental questions related to regulation of the stress transcriptome in response to stress challenges. Microarray results of the Arabidopsis transcriptome indicate that several genes could be upregulated during multiple stresses. High-salinity, drought, and low temperature are three common environmental stress factors that seriously influence plant growth and development worldwide. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that have also been linked to stress responses. However, the relationship between miRNA expression and stress responses is just beginning to be explored. Here we have computationally analyzed 123 non redundant miRNA sequences reported for Arabidopsis thaliana, including 17 miRNA sequences which were reported to be stress regulated in literature. A significant increase in the GC content of stress regulated miRNA sequences was observed which further extends the view that miRNAs act as ubiquitous regulators under stress conditions. GC content may also be considered as a critical parameter for predicting stress regulated miRNAs in plants like Arabidopsis thaliana.


Critical Reviews in Oncology Hematology | 2016

Exploring miRNA based approaches in cancer diagnostics and therapeutics.

Shivangi Mishra; Tanuja Yadav; Vibha Rani

MicroRNAs (miRNAs), a highly conserved class of tissue specific, small non-protein coding RNAs maintain cell homeostasis by negative gene regulation. Proper controlling of miRNA expression is required for a balanced physiological environment, as these small molecules influence almost every genetic pathway from cell cycle checkpoint, cell proliferation to apoptosis, with a wide range of target genes. Deregulation in miRNAs expression correlates with various cancers by acting as tumor suppressors and oncogenes. Although promising therapies exist to control tumor development and progression, there is a lack of efficient diagnostic and therapeutic approaches for delineating various types of cancer. The molecularly different tumors can be differentiated by specific miRNA profiling as their phenotypic signatures, which can hence be exploited to surmount the diagnostic and therapeutic challenges. Present review discusses the involvement of miRNAs in oncogenesis with the analysis of patented research available on miRNAs.


Cardiovascular Toxicology | 2013

Cardioprotective Role of Syzygium cumini Against Glucose-Induced Oxidative Stress in H9C2 Cardiac Myocytes

Neha Atale; Mainak Chakraborty; Sujata Mohanty; Susinjan Bhattacharya; Darshika Nigam; Manish Sharma; Vibha Rani

Diabetic patients are known to have an independent risk of cardiomyopathy. Hyperglycemia leads to upregulation of reactive oxygen species (ROS) that may contribute to diabetic cardiomyopathy. Thus, agents that suppress glucose-induced intracellular ROS levels can have therapeutic potential against diabetic cardiomyopathy. Syzygium cumini is well known for its anti-diabetic potential, but its cardioprotective properties have not been evaluated yet. The aim of the present study is to analyze cardioprotective properties of methanolic seed extract (MSE) of S. cumini in diabetic in vitro conditions. ROS scavenging activity of MSE was studied in glucose-stressed H9C2 cardiac myoblasts after optimizing the safe dose of glucose and MSE by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide. 2′,7′-dichlorfluorescein diacetate staining and Fluorescence-activated cell sorting analysis confirmed the suppression of ROS production by MSE in glucose-induced cells. The intracellular NO and H2O2 radical–scavenging activity of MSE was found to be significantly high in glucose-induced cells. Exposure of glucose-stressed H9C2 cells to MSE showed decline in the activity of catalase and superoxide dismutase enzymes and collagen content. 4′,6-diamidino-2-phenylindole, propidium iodide and 10-N-nonyl-3,6-bis (dimethylamino) acridine staining revealed that MSE protects myocardial cells from glucose-induced stress. Taken together, our findings revealed that the well-known anti-diabetic S. cumini can also protect the cardiac cells from glucose-induced stress.


PLOS ONE | 2013

Curcumin Suppresses Gelatinase B Mediated Norepinephrine Induced Stress in H9c2 Cardiomyocytes

Shrey Kohli; Aastha Chhabra; Astha Jaiswal; Yashika Rustagi; Manish Sharma; Vibha Rani

Background Extracellular matrix (ECM) remodeling facilitates biomechanical signals in response to abnormal physiological conditions. This process is witnessed as one of the major effects of the stress imposed by catecholamines, such as epinephrine and norepinephrine (NE), on cardiac muscle cells. Matrix metalloproteinases (MMPs) are the key proteases involved in degradation of the ECM in heart. Objectives The present study focuses on studying the effect of curcumin on Gelatinase B (MMP-9), an ECM remodeling regulatory enzyme, in NE-induced cardiac stress. Curcumin, a bioactive polyphenol found in the spice turmeric, has been studied for its multi-fold beneficial properties. This study focuses on investigating the role of curcumin as a cardio-protectant. Methods H9c2 cardiomyocytes were subjected to NE and curcumin treatments to study the response in stress conditions. Effect on total collagen content was studied using Picrosirus red staining. Gelatinase B activity was assessed through Gel-Diffusion Assay and Zymographic techniques. RT-PCR, Western Blotting and Immunocytochemistry were performed to study effect on expression of gelatinase B. Further, the effect of curcumin on the localization of NF-κB, known to regulate gelatinase B, was also examined. Results Curcumin suppressed the increase in the total collagen content under hypertrophic stress and was found to inhibit the in-gel and in-situ gelatinolytic activity of gelatinase B. Moreover, it was found to suppress the mRNA and protein expression of gelatinase B. Conclusions The study provides an evidence for an overall inhibitory effect of curcumin on Gelatinase B in NE-induced hypertrophic stress in H9c2 cardiomyocytes which may contribute in the prevention of ECM remodeling.

Collaboration


Dive into the Vibha Rani's collaboration.

Top Co-Authors

Avatar

Aditi Jain

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Shrey Kohli

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Umesh C. S. Yadav

Central University of Gujarat

View shared research outputs
Top Co-Authors

Avatar

Aastha Chhabra

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Neha Atale

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Sharad Saxena

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Shivangi Mishra

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Yashika Rustagi

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Anubhuti Gupta

Jaypee Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Astha Jaiswal

Jaypee Institute of Information Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge