Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vicki L. Chandler is active.

Publication


Featured researches published by Vicki L. Chandler.


The Plant Cell | 1989

Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences.

Vicki L. Chandler; J P Radicella; T P Robbins; J Chen; D Turks

Genetic studies in maize have identified several regulatory genes that control the tissue-specific synthesis of the purple anthocyanin pigments during development. Two such genes, R and B, exhibit extensive allelic diversity with respect to the tissue specificity and developmental timing of anthocyanin synthesis. Previous genetic studies demonstrated that certain B alleles can substitute for R function, and in these cases only one functional allele at either locus is required for pigment synthesis in the aleurone. In addition, biochemical studies have shown that both genes act on the same biosynthetic pathway, suggesting that the genes are functionally duplicate. In this report we describe DNA hybridization experiments that demonstrate that the functionally duplicate nature of B and R is reflected in DNA sequence similarity between the two genes. We took advantage of this homology and used the R genomic sequences to clone B. Two different strategies were pursued and two genomic clones isolated, a 2.5-kilobase BgIII fragment linked to the b allele in W23 inbred stocks and a 1.0-kilobase HindIII fragment linked to the B allele in CM37 stocks. Examination of several independent transposable element insertion mutations in B and revertant derivatives demonstrated that our clones recognize the functional B gene. Genomic clones representing the entire B-Peru allele were isolated, and a detailed restriction map was prepared. Using these clones we have identified a 2.2-kilobase mRNA in husks from plants containing either B-I or B-Peru alleles, but no B mRNA was detected in plants containing a b allele. The transcript is at least 100 times more abundant in strongly pigmented B-I husks than in weakly pigmented B-Peru husk tissue. Expression of functional B alleles in husk tissue correlates with the coordinate increase in mRNA levels of two structural genes of the pathway, A1 and Bz1, consistent with the postulated role of B as a regulatory gene.


Nature | 2006

An RNA-dependent RNA polymerase is required for paramutation in maize

Mary Alleman; Lyudmila Sidorenko; Karen M. McGinnis; Vishwas Seshadri; Jane E. Dorweiler; Joshua White; Kristin Sikkink; Vicki L. Chandler

Paramutation is an allele-dependent transfer of epigenetic information, which results in the heritable silencing of one allele by another. Paramutation at the b1 locus in maize is mediated by unique tandem repeats that communicate in trans to establish and maintain meiotically heritable transcriptional silencing. The mop1 (mediator of paramutation1) gene is required for paramutation, and mop1 mutations reactivate silenced Mutator elements. Plants carrying mutations in the mop1 gene also stochastically exhibit pleiotropic developmental phenotypes. Here we report the map-based cloning of mop1, an RNA-dependent RNA polymerase gene (RDRP), most similar to the RDRP in plants that is associated with the production of short interfering RNA (siRNA) targeting chromatin. Nuclear run-on assays reveal that the tandem repeats required for b1 paramutation are transcribed from both strands, but siRNAs were not detected. We propose that the mop1 RDRP is required to maintain a threshold level of repeat RNA, which functions in trans to establish and maintain the heritable chromatin states associated with paramutation.


The EMBO Journal | 1990

Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues.

Stephen A. Goff; Theodore M. Klein; B A Roth; Michael E. Fromm; Karen C. Cone; J P Radicella; Vicki L. Chandler

The C1, B and R genes regulating the maize anthocyanin biosynthetic pathway encode tissue‐specific regulatory proteins with similarities to transcriptional activators. The C1 and R regulatory genes are usually responsible for pigmentation of seed tissues, and the B‐Peru allele of B, but not the B‐I allele, can substitute for R function in the seed. In this study, members of the B family of regulatory genes were delivered to intact maize tissues by high velocity microprojectiles. In colorless r aleurones or embryos, the introduction of the B‐Peru genomic clone or the expressed cDNAs of B‐Peru or B‐I resulted in anthocyanin‐producing cells. Luciferase produced from the Bronze1 anthocyanin structural gene promoter was induced 100‐fold when co‐introduced with the expressed B‐Peru or B‐I cDNAs. This quantitative transactivation assay demonstrates that the proteins encoded by these two B alleles are equally able to transactivate the Bronze1 promoter. Analogous results were obtained using embryogenic callus cells. These observations suggest that one major contribution towards tissue‐specific anthocyanin synthesis controlled by the various alleles of the B and R genes is the differential expression of functionally similar proteins.


Cell | 2007

Paramutation: From Maize to Mice

Vicki L. Chandler

Paramutation is the epigenetic transfer of information from one allele of a gene to another to establish a state of gene expression that is heritable for generations. RNA has recently emerged as a prominent mediator of this remarkable phenomenon in both maize and mice.


The Plant Cell | 1997

EVIDENCE FOR DIRECT ACTIVATION OF AN ANTHOCYANIN PROMOTER BY THE MAIZE C1 PROTEIN AND COMPARISON OF DNA BINDING BY RELATED MYB DOMAIN PROTEINS

Manuel B. Sainz; Erich Grotewold; Vicki L. Chandler

The enzyme-encoding genes of two classes of maize flavonoid pigments, anthocyanins and phlobaphenes, are differentially regulated by distinct transcription factors. Anthocyanin biosynthetic gene activation requires the Myb domain C1 protein and the basic helix-loop-helix B or R proteins. In the phlobaphene pathway, a subset of C1-regulated genes, including a1, are activated by the Myb domain P protein independently of B/R. We show sequence-specific binding to the a1 promoter by C1 in the absence of B. Activation is decreased by mutations in the C1 DNA binding domain or in a1 sequences bound by C1, providing direct evidence for activation of the anthocyanin biosynthetic genes by C1. The two C1 binding sites in the a1 promoter are also bound by P. One site is bound with higher affinity by P relative to C1, whereas the other site is bound with similar lower affinity by both proteins. Interestingly, either site is sufficient for C1 plus B/R or P activation in vivo, demonstrating that differences in DNA binding affinities between P and C1 are insufficient to explain the differential requirement for B. Results of DNA binding site-selection experiments suggest that C1 has a broader DNA binding specificity than does P, which may help C1 to activate a more diverse set of promoters.


Nature Reviews Genetics | 2004

Chromatin conversations: Mechanisms and implications of paramutation

Vicki L. Chandler; Maike Stam

Paramutation is a widespread epigenetic phenomenon that was first described in pea and then extensively studied in maize, whereby combining two specific alleles results in a heritable change in the expression of one of the alleles. Far from being restricted to endogenous plant genes, paramutation-like interactions have been described in several kingdoms, in which they can occur between homologous transgenes or between transgenes and homologous endogenous genes at allelic or non-allelic positions. In this review, we discuss potential mechanisms underlying paramutation, compare paramutation to several other trans-sensing phenomena, and speculate on the potential roles and evolutionary implications of these intriguing homology-sensing mechanisms.


The Plant Cell | 2000

mediator of paramutation1 Is Required for Establishment and Maintenance of Paramutation at Multiple Maize Loci

Jane E. Dorweiler; Charles C. Carey; Kenneth M. Kubo; Jay B. Hollick; Jerry L. Kermicle; Vicki L. Chandler

Paramutation is the directed, heritable alteration of the expression of one allele when heterozygous with another allele. Here, the isolation and characterization of a mutation affecting paramutation, mediator of paramutation1-1 (mop1-1), are described. Experiments demonstrate that the wild-type gene Mop1 is required for establishment and maintenance of the paramutant state. The mop1-1 mutation affects paramutation at the multiple loci tested but has no effect on alleles that do not participate in paramutation. The mutation does not alter the amounts of actin and ubiquitin transcripts, which suggests that the mop1 gene does not encode a global repressor. Maize plants homozygous for mop1-1 can have pleiotropic developmental defects, suggesting that mop1-1 may affect more genes than just the known paramutant ones. The mop1-1 mutation does not alter the extent of DNA methylation in rDNA and centromeric repeats. The observation that mop1 affects paramutation at multiple loci, despite major differences between these loci in their gene structure, correlations with DNA methylation, and stability of the paramutant state, suggests that a common mechanism underlies paramutation. A protein-based epigenetic model for paramutation is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Distinct size distribution of endogeneous siRNAs in maize: Evidence from deep sequencing in the mop1-1 mutant.

Kan Nobuta; Cheng Lu; Roli Shrivastava; Manoj Pillay; Emanuele De Paoli; Monica Accerbi; Mario Arteaga-Vazquez; Lyudmila Sidorenko; Dong-Hoon Jeong; Yang Yen; Pamela J. Green; Vicki L. Chandler; Blake C. Meyers

Small RNAs from plants are known to be highly complex and abundant, with this complexity proportional to genome size. Most endogenous siRNAs in Arabidopsis are dependent on RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) for their biogenesis. Recent work has demonstrated that the maize MEDIATOR OF PARAMUTATION1 (mop1) gene is a predicted ortholog of RDR2. The mop1 gene is required for establishment of paramutation and maintenance of transcriptional silencing of transposons and transgenes, suggesting the potential involvement of small RNAs. We analyzed small RNAs in wild-type maize and in the isogenic mop1-1 loss-of-function mutant by using Illuminas sequencing-by-synthesis (SBS) technology, which allowed us to characterize the complement of maize small RNAs to considerable depth. Similar to rdr2 in Arabidopsis, in mop1-1, the 24-nucleotide (nt) endogenous heterochromatic short-interfering siRNAs were dramatically reduced, resulting in an enrichment of miRNAs and transacting siRNAs. In contrast to the Arabidopsis rdr2 mutant, the mop1-1 plants retained a highly abundant heterochromatic ≈22-nt class of small RNAs, suggesting a second mechanism for heterochromatic siRNA production. The enrichment of miRNAs and loss of 24-nt heterochromatic siRNAs in mop1-1 should be advantageous for miRNA discovery as the maize genome becomes more fully sequenced.


Plant Molecular Biology | 2000

Paramutation in maize

Vicki L. Chandler; William B. Eggleston; Jane E. Dorweiler

Paramutation is a heritable change in gene expression induced by allele interactions. This review summarizes key experiments on three maize loci, which undergo paramutation. Similarities and differences between the phenomenology at the three loci are described. In spite of many differences with respect to the stability of the reduced expression states at each locus or whether paramutation correlates with DNA methylation and repeated sequences within the loci, recent experiments are consistent with a common mechanism underlying paramutation at all three loci. Most strikingly, trans-acting mutants have been isolated that prevent paramutation at all three loci and lead to the activation of silenced Mutator transposable elements. Models consistent with the hypothesis that paramutation involves heritable changes in chromatin structure are presented. Several potential roles for paramutation are discussed. These include localizing recombination to low-copy sequences within the genome, establishing and maintaining chromatin domain boundaries, and providing a mechanism for plants to transmit an environmentally influenced expression state to progeny.


Plant Physiology | 2003

Comparative Analysis of SET Domain Proteins in Maize and Arabidopsis Reveals Multiple Duplications Preceding the Divergence of Monocots and Dicots

Nathan M. Springer; Carolyn A. Napoli; David A. Selinger; Ritu Pandey; Karen C. Cone; Vicki L. Chandler; Heidi F. Kaeppler; Shawn M. Kaeppler

Histone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization. Our analysis reveals five classes of SET domain proteins in plants that can be further divided into 19 orthology groups. In some cases, such as the Enhancer of zeste-like and trithorax-like proteins, plants and animals contain homologous proteins with a similar organization of domains outside of the SET domain. However, a majority of plant SET domain proteins do not have an animal homolog with similar domain organization, suggesting that plants have unique mechanisms to establish and maintain chromatin states. Although the domains present in plant and animal SET domain proteins often differ, the domains found in the plant proteins have been generally implicated in protein-protein interactions, indicating that most SET domain proteins operate in complexes. Combined analysis of the maize and Arabidopsis SET domain proteins reveals that duplication of SET domain proteins in plants is extensive and has occurred via multiple mechanisms that preceded the divergence of monocots and dicots.

Collaboration


Dive into the Vicki L. Chandler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maike Stam

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay B. Hollick

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles C. Carey

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge