Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vickie Tsui is active.

Publication


Featured researches published by Vickie Tsui.


Journal of Medicinal Chemistry | 2011

Discovery of a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor (GDC-0980) for the Treatment of Cancer.

Daniel P. Sutherlin; Linda Bao; Megan Berry; Georgette Castanedo; Irina Chuckowree; Jenna Dotson; Adrian Dzh Folks; Lori S. Friedman; Richard Goldsmith; Janet Gunzner; Timothy P. Heffron; John Lesnick; Cristina Lewis; Simon Mathieu; Jeremy Murray; Jim Nonomiya; Jodie Pang; Niel Pegg; Wei Wei Prior; Lionel Rouge; Laurent Salphati; Deepak Sampath; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Binqing Wei; Christian Wiesmann; Ping Wu; Bing-Yan Zhu

The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer.


Cancer Cell | 2015

Genomic Analysis of Smoothened Inhibitor Resistance in Basal Cell Carcinoma

Hayley Sharpe; Gregoire Pau; Gerrit J. P. Dijkgraaf; Nicole Basset-Seguin; Zora Modrusan; Thomas Januario; Vickie Tsui; Alison B. Durham; Andrzej A. Dlugosz; Peter M. Haverty; Richard Bourgon; Jean Y. Tang; Kavita Y. Sarin; Luc Dirix; David C. Fisher; Charles M. Rudin; Howard Sofen; Michael R. Migden; Robert L. Yauch; Frederic J. de Sauvage

Smoothened (SMO) inhibitors are under clinical investigation for the treatment of several cancers. Vismodegib is approved for the treatment of locally advanced and metastatic basal cell carcinoma (BCC). Most BCC patients experience significant clinical benefit on vismodegib, but some develop resistance. Genomic analysis of tumor biopsies revealed that vismodegib resistance is associated with Hedgehog (Hh) pathway reactivation, predominantly through mutation of the drug target SMO and to a lesser extent through concurrent copy number changes in SUFU and GLI2. SMO mutations either directly impaired drug binding or activated SMO to varying levels. Furthermore, we found evidence for intra-tumor heterogeneity, suggesting that a combination of therapies targeting components at multiple levels of the Hh pathway is required to overcome resistance.


Journal of Medicinal Chemistry | 2010

Discovery of (Thienopyrimidin-2-yl)aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer.

Daniel P. Sutherlin; Deepak Sampath; Megan Berry; Georgette Castanedo; Zhigang Chang; Irina Chuckowree; Jenna Dotson; Adrian Folkes; Lori Friedman; Richard Goldsmith; Tim Heffron; Leslie Lee; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Alan G. Olivero; Jodie Pang; Wei Wei Prior; Laurent Salphati; Steve Sideris; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Susan Wong; Bing-Yan Zhu

The PI3K/AKT/mTOR pathway has been shown to play an important role in cancer. Starting with compounds 1 and 2 (GDC-0941) as templates, (thienopyrimidin-2-yl)aminopyrimidines were discovered as potent inhibitors of PI3K or both PI3K and mTOR. Structural information derived from PI3K gamma-ligand cocrystal structures of 1 and 2 were used to design inhibitors that maintained potency for PI3K yet improved metabolic stability and oral bioavailability relative to 1. The addition of a single methyl group to the optimized 5 resulted in 21, which had significantly reduced potency for mTOR. The lead compounds 5 (GNE-493) and 21 (GNE-490) have good pharmacokinetic (PK) parameters, are highly selective, demonstrate knock down of pathway markers in vivo, and are efficacious in xenograft models where the PI3K pathway is deregulated. Both compounds were compared in a PI3K alpha mutated MCF7.1 xenograft model and were found to have equivalent efficacy when normalized for exposure.


ACS Chemical Biology | 2009

Antagonism of c-IAP and XIAP proteins is required for efficient induction of cell death by small-molecule IAP antagonists.

Chudi Ndubaku; Eugene Varfolomeev; Lan Wang; Kerry Zobel; Kevin Lau; Linda O. Elliott; Brigitte Maurer; Anna V. Fedorova; Jasmin N. Dynek; Michael F. T. Koehler; Sarah G. Hymowitz; Vickie Tsui; Kurt Deshayes; Wayne J. Fairbrother; John A. Flygare; Domagoj Vucic

The inhibitor of apoptosis (IAP) proteins are critical regulators of cancer cell survival, which makes them attractive targets for therapeutic intervention in cancers. Herein, we describe the structure-based design of IAP antagonists with high affinities and selectivity (>2000-fold) for c-IAP1 over XIAP and their functional characterization as activators of apoptosis in tumor cells. Although capable of inducing cell death and preventing clonogenic survival, c-IAP-selective antagonists are significantly less potent in promoting apoptosis when compared to pan-selective compounds. However, both pan-IAP- and c-IAP-selective antagonists stimulate c-IAP1 and c-IAP2 degradation and activation of NF-kappaB pathways with comparable potencies. Therefore, although compounds that specifically target c-IAP1 and c-IAP2 are capable of inducing apoptosis, antagonism of the c-IAP proteins and XIAP is required for efficient induction of cancer cell death by IAP antagonists.


Bioorganic & Medicinal Chemistry Letters | 2010

Identification of GNE-477, a potent and efficacious dual PI3K/mTOR inhibitor

Timothy P. Heffron; Megan Berry; Georgette Castanedo; Christine Chang; Irina Chuckowree; Jennafer Dotson; Adrian Folkes; Janet Gunzner; John Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Alan G. Olivero; Jodie Pang; David Peterson; Laurent Salphati; Deepak Sampath; Steve Sideris; Daniel P. Sutherlin; Vickie Tsui; Nan Chi Wan; Shumei Wang; Susan Wong; Bing-Yan Zhu

Efforts to identify potent small molecule inhibitors of PI3 kinase and mTOR led to the discovery of the exceptionally potent 6-aryl morpholino thienopyrimidine 6. In an effort to reduce the melting point in analogs of 6, the thienopyrimidine was modified by the addition of a methyl group to disrupt planarity. This modification resulted in a general improvement in in vivo clearance. This discovery led to the identification of GNE-477 (8), a potent and efficacious dual PI3K/mTOR inhibitor.


Journal of Medicinal Chemistry | 2011

Rational Design of Phosphoinositide 3-Kinase α Inhibitors That Exhibit Selectivity over the Phosphoinositide 3-Kinase β Isoform

Timothy P. Heffron; Binqing Wei; Alan G. Olivero; Steven Staben; Vickie Tsui; Steven Do; Jennafer Dotson; Adrian Folkes; Paul Goldsmith; Richard Goldsmith; Janet Gunzner; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Stephen J. Shuttleworth; Daniel P. Sutherlin; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Bing-Yan Zhu

Of the four class I phosphoinositide 3-kinase (PI3K) isoforms, PI3Kα has justly received the most attention for its potential in cancer therapy. Herein we report our successful approaches to achieve PI3Kα vs PI3Kβ selectivity for two chemical series. In the thienopyrimidine series of inhibitors, we propose that select ligands achieve selectivity derived from a hydrogen bonding interaction with Arg770 of PI3Kα that is not attained with the corresponding Lys777 of PI3Kβ. In the benzoxepin series of inhibitors, the selectivity observed can be rationalized by the difference in electrostatic potential between the two isoforms in a given region rather than any specific interaction.


European Journal of Medicinal Chemistry | 2013

Lead identification of novel and selective TYK2 inhibitors.

Jun Liang; Vickie Tsui; Anne van Abbema; Liang Bao; Kathy Barrett; Maureen Beresini; Leo Berezhkovskiy; Wade S. Blair; Christine Chang; James Driscoll; Charles Eigenbrot; Nico Ghilardi; Paul Gibbons; Jason S. Halladay; Adam R. Johnson; Pawan Bir Kohli; Yingjie Lai; Marya Liimatta; Priscilla Mantik; Kapil Menghrajani; Jeremy Murray; Amy Sambrone; Yisong Xiao; Steven Shia; Young G. Shin; Jan Smith; Sue Sohn; Mark S. Stanley; Mark Ultsch; Birong Zhang

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as psoriasis and inflammatory bowel diseases (IBD), by selective targeting of TYK2. Hit triage, following a high-throughput screen for TYK2 inhibitors, revealed pyridine 1 as a promising starting point for lead identification. Initial expansion of 3 separate regions of the molecule led to eventual identification of cyclopropyl amide 46, a potent lead analog with good kinase selectivity, physicochemical properties, and pharmacokinetic profile. Analysis of the binding modes of the series in TYK2 and JAK2 crystal structures revealed key interactions leading to good TYK2 potency and design options for future optimization of selectivity.


Journal of Medicinal Chemistry | 2016

Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains.

Terry D. Crawford; Vickie Tsui; E. Megan Flynn; Shumei Wang; Alexander M. Taylor; Alexandre Côté; James E. Audia; Maureen Beresini; Daniel J. Burdick; Richard D. Cummings; Les A. Dakin; Martin Duplessis; Andrew C. Good; Michael C. Hewitt; Hon-Ren Huang; Hariharan Jayaram; James R. Kiefer; Ying Jiang; Jeremy Murray; Christopher G. Nasveschuk; Eneida Pardo; Florence Poy; F. Anthony Romero; Yong Tang; Jian Wang; Zhaowu Xu; Laura Zawadzke; Xiaoyu Zhu; Brian K. Albrecht; Steven Magnuson

The biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the N-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed. The substituents either directly displaced and rearranged the conserved solvent network, as in BRD4(1) and TAF1(2), or induced a narrow hydrophobic channel adjacent to the lipophilic shelf, as in BRD9 and CECR2. The preference of distinct substituents for individual bromodomains provided selectivity handles useful for future lead optimization efforts for selective BRD9, CECR2, and TAF1(2) inhibitors.


Journal of Medicinal Chemistry | 2015

Inhibiting the deubiquitinating enzymes (DUBs).

Chudi Ndubaku; Vickie Tsui

The diverse roles of deubiquitinating enzymes, or DUBs, in determining the fate of specific proteins continue to unfold. Concurrent with the revelation of DUBs as potential therapeutic targets are publications of small molecule inhibitors of these enzymes. In this review, we summarize these molecules and their associated data and suggest additional experiments to further validate and characterize these compounds. We believe the field of drug discovery against DUBs is still in its infancy, but advances in assay development, biophysical techniques, and screening libraries hold promise for identifying suitable agents that could advance into the clinic.


ACS Medicinal Chemistry Letters | 2016

Fragment-Based Discovery of a Selective and Cell-Active Benzodiazepinone CBP/EP300 Bromodomain Inhibitor (CPI-637).

Alexander M. Taylor; Alexandre Côté; Michael C. Hewitt; Richard Pastor; Yves Leblanc; Christopher G. Nasveschuk; F. Anthony Romero; Terry D. Crawford; Nico Cantone; Hariharan Jayaram; Jeremy W. Setser; Jeremy D. Murray; Maureen Beresini; Gladys de Leon Boenig; Zhongguo Chen; Andrew R. Conery; Richard T. Cummings; Leslie A. Dakin; E. Megan Flynn; Oscar W. Huang; Susan Kaufman; Patricia J. Keller; James R. Kiefer; Tommy Lai; Yingjie Li; Jiangpeng Liao; Wenfeng Liu; Henry Lu; Eneida Pardo; Vickie Tsui

CBP and EP300 are highly homologous, bromodomain-containing transcription coactivators involved in numerous cellular pathways relevant to oncology. As part of our effort to explore the potential therapeutic implications of selectively targeting bromodomains, we set out to identify a CBP/EP300 bromodomain inhibitor that was potent both in vitro and in cellular target engagement assays and was selective over the other members of the bromodomain family. Reported here is a series of cell-potent and selective probes of the CBP/EP300 bromodomains, derived from the fragment screening hit 4-methyl-1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one.

Collaboration


Dive into the Vickie Tsui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge