Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor Brovkin is active.

Publication


Featured researches published by Victor Brovkin.


Journal of Climate | 2006

Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison

Pierre Friedlingstein; Peter M. Cox; Richard A. Betts; Laurent Bopp; W. von Bloh; Victor Brovkin; P. Cadule; Scott C. Doney; Michael Eby; Inez Y. Fung; G. Bala; Jasmin G. John; Chris D. Jones; Fortunat Joos; Tomomichi Kato; Michio Kawamiya; Wolfgang Knorr; Keith Lindsay; H. D. Matthews; Thomas Raddatz; P. J. Rayner; Christian H. Reick; Erich Roeckner; K.-G. Schnitzler; Reiner Schnur; Kuno M. Strassmann; Andrew J. Weaver; Chisato Yoshikawa; Ning Zeng

Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.


Nature | 2009

Early-warning signals for critical transitions

Marten Scheffer; Jordi Bascompte; William A. Brock; Victor Brovkin; Stephen R. Carpenter; Vasilis Dakos; Hermann Held; Egbert H. van Nes; Max Rietkerk; George Sugihara

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.


Geophysical Research Letters | 1999

Simulation of an abrupt change in Saharan vegetation in the Mid‐Holocene

Martin Claussen; Claudia Kubatzki; Victor Brovkin; Andrey Ganopolski; Philipp Hoelzmann; Hans-Joachim Pachur

Climate variability during the present inter- glacial, the Holocene, has been rather smooth in compar- ison with the last glacial. Nevertheless, there were some rather abrupt climate changes. One of these changes, the desertication of the Saharan and Arabian region some 4 - 6 thousand years ago, was presumably quite important for human society. It could have been the stimulus leading to the foundation of civilizations along the Nile, Euphrat and Tigris rivers. Here we argue that Saharan and Arabian de- sertication was triggered by subtle variations in the Earths orbit which were strongly amplied by atmosphere- vegeta- tion feedbacks in the subtropics. The timing of this tran- sition, however, was mainly governed by a global interplay between atmosphere, ocean, sea ice, and vegetation.


Climate Dynamics | 2000

CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate

Vladimir Petoukhov; Andrey Ganopolski; Victor Brovkin; Martin Claussen; A. V. Eliseev; Claudia Kubatzki; Stefan Rahmstorf

Abstract A 2.5-dimensional climate system model of intermediate complexity CLIMBER-2 and its performance for present climate conditions are presented. The model consists of modules describing atmosphere, ocean, sea ice, land surface processes, terrestrial vegetation cover, and global carbon cycle. The modules interact through the fluxes of momentum, energy, water and carbon. The model has a coarse spatial resolution, nevertheless capturing the major features of the Earths geography. The model describes temporal variability of the system on seasonal and longer time scales. Due to the fact that the model does not employ flux adjustments and has a fast turnaround time, it can be used to study climates significantly different from the present one and to perform long-term (multimillennia) simulations. The comparison of the model results with present climate data show that the model successfully describes the seasonal variability of a large set of characteristics of the climate system, including radiative balance, temperature, precipitation, ocean circulation and cryosphere.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Slowing down as an early warning signal for abrupt climate change

Vasilis Dakos; Marten Scheffer; Egbert H. van Nes; Victor Brovkin; Vladimir Petoukhov; Hermann Held

In the Earths history, periods of relatively stable climate have often been interrupted by sharp transitions to a contrasting state. One explanation for such events of abrupt change is that they happened when the earth system reached a critical tipping point. However, this remains hard to prove for events in the remote past, and it is even more difficult to predict if and when we might reach a tipping point for abrupt climate change in the future. Here, we analyze eight ancient abrupt climate shifts and show that they were all preceded by a characteristic slowing down of the fluctuations starting well before the actual shift. Such slowing down, measured as increased autocorrelation, can be mathematically shown to be a hallmark of tipping points. Therefore, our results imply independent empirical evidence for the idea that past abrupt shifts were associated with the passing of critical thresholds. Because the mechanism causing slowing down is fundamentally inherent to tipping points, it follows that our way to detect slowing down might be used as a universal early warning signal for upcoming catastrophic change. Because tipping points in ecosystems and other complex systems are notoriously hard to predict in other ways, this is a promising perspective.


Journal of Climate | 2013

Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth System Models

Vivek K. Arora; George J. Boer; Pierre Friedlingstein; Michael Eby; Chris D. Jones; James R. Christian; Gordon B. Bonan; Laurent Bopp; Victor Brovkin; P. Cadule; Tomohiro Hajima; Tatiana Ilyina; Keith Lindsay; Jerry Tjiputra; Tongwen Wu

AbstractThe magnitude and evolution of parameters that characterize feedbacks in the coupled carbon–climate system are compared across nine Earth system models (ESMs). The analysis is based on results from biogeochemically, radiatively, and fully coupled simulations in which CO2 increases at a rate of 1% yr−1. These simulations are part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). The CO2 fluxes between the atmosphere and underlying land and ocean respond to changes in atmospheric CO2 concentration and to changes in temperature and other climate variables. The carbon–concentration and carbon–climate feedback parameters characterize the response of the CO2 flux between the atmosphere and the underlying surface to these changes. Feedback parameters are calculated using two different approaches. The two approaches are equivalent and either may be used to calculate the contribution of the feedback terms to diagnosed cumulative emissions. The contribution of carbon–concentration feedback to...


Global Biogeochemical Cycles | 2002

Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model

Victor Brovkin; Jørgen Bendtsen; Martin Claussen; Andrey Ganopolski; Claudia Kubatzki; Vladimir Petoukhov; Andrei Andreev

Holocene was accompanied by significant changes in vegetation cover and an increase inatmosphericCO2concentration.Theessentialquestioniswhetheritispossibletoexplain thesechangesinaconsistentway,accounting fortheorbitalparametersasthemainexternal forcing for the climate system. We investigate this problem using the computationally efficient model of climate system, CLIMBER-2, which includes models for oceanic and terrestrial biogeochemistry. We found that changes in climate and vegetation cover in the northern subtropical and circumpolar regions can be attributed to the changes in the orbital forcing. Explanation of the atmospheric CO2 record requires an additional assumption of excessive CaCO3sedimentation in the ocean. The modeled decrease in the carbonate ion concentration in the deep ocean is similar to that inferred from CaCO3 sediment data [Broecker et al., 1999]. For 8 kyr B.P., the model estimates the terrestrial carbon pool ca. 90 Pg higher than its preindustrial value. Simulated atmospheric d 13 C declines during the


Geophysical Research Letters | 2001

Biogeophysical versus biogeochemical feedbacks of large-scale land cover change

Martin Claussen; Victor Brovkin; Andrey Ganopolski

Large-scale changes in land cover affect near- surface energy, moisture and momentum fluxes owing to changes in surface structure (referred to as biogeophysical effects) and the atmospheric CO2 concentration owing to changes in biomass (biogeochemical effects). Here we quan- tify the relative magnitude of these processes as well as their synergisms by using a coupled atmosphere-biosphere-ocean model of intermediate complexity. Our sensitivity studies show that tropical deforestation tends to warm the planet because the increase in atmospheric CO2 and hence, at- mospheric radiation, outweighs the biogeophysical effects. In mid and high northern latitudes, however, biogeophysi- cal processes, mainly the snow-vegetation-albedo feedback through its synergism with the sea-ice-albedo feedback, win over biogeochemical processes, thereby eventually leading to a global cooling in the case of deforestation and to a global warming, in the case of afforestation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Ocean methane hydrates as a slow tipping point in the global carbon cycle

David Archer; Bruce A. Buffett; Victor Brovkin

We present a model of the global methane inventory as hydrate and bubbles below the sea floor. The model predicts the inventory of CH4 in the ocean today to be ≈1600–2,000 Pg of C. Most of the hydrate in the model is in the Pacific, in large part because lower oxygen levels enhance the preservation of organic carbon. Because the oxygen concentration today may be different from the long-term average, the sensitivity of the model to O2 is a source of uncertainty in predicting hydrate inventories. Cold water column temperatures in the high latitudes lead to buildup of hydrates in the Arctic and Antarctic at shallower depths than is possible in low latitudes. A critical bubble volume fraction threshold has been proposed as a critical threshold at which gas migrates all through the sediment column. Our model lacks many factors that lead to heterogeneity in the real hydrate reservoir in the ocean, such as preferential hydrate formation in sandy sediments and subsurface gas migration, and is therefore conservative in its prediction of releasable methane, finding only 35 Pg of C released after 3 °C of uniform warming by using a 10% critical bubble volume. If 2.5% bubble volume is taken as critical, then 940 Pg of C might escape in response to 3 °C warming. This hydrate model embedded into a global climate model predicts ≈0.4–0.5 °C additional warming from the hydrate response to fossil fuel CO2 release, initially because of methane, but persisting through the 10-kyr duration of the simulations because of the CO2 oxidation product of methane.


Journal of Climate | 2013

Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21st century

Victor Brovkin; Lena R. Boysen; Vivek K. Arora; J. P. Boisier; P. Cadule; L P Chini; Martin Claussen; Pierre Friedlingstein; B. J. J. M. van den Hurk; George C. Hurtt; Colin Jones; Etsushi Kato; N. de Noblet-Ducoudré; F. Pacifico; Julia Pongratz; M. Weiss

AbstractThe effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Glo...

Collaboration


Dive into the Victor Brovkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Ganopolski

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Kubatzki

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Vladimir Petoukhov

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge