Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Petoukhov is active.

Publication


Featured researches published by Vladimir Petoukhov.


Nature | 1998

Simulation of modern and glacial climates with a coupled global model of intermediate complexity

Andrey Ganopolski; Stefan Rahmstorf; Vladimir Petoukhov; Martin Claussen

A global coupled ocean–atmosphere model of intermediate complexity is used to simulate the equilibrium climate of both today and the Last Glacial Maximum, around 21,000 years ago. The model successfully predicts the atmospheric and oceanic circulations, temperature distribution, hydrological cycle and sea-ice cover of both periods without using ‘flux adjustments’. Changes in oceanic circulation, particularly in the Atlantic Ocean, play an important role in glacial cooling.


Climate Dynamics | 2000

CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate

Vladimir Petoukhov; Andrey Ganopolski; Victor Brovkin; Martin Claussen; A. V. Eliseev; Claudia Kubatzki; Stefan Rahmstorf

Abstract A 2.5-dimensional climate system model of intermediate complexity CLIMBER-2 and its performance for present climate conditions are presented. The model consists of modules describing atmosphere, ocean, sea ice, land surface processes, terrestrial vegetation cover, and global carbon cycle. The modules interact through the fluxes of momentum, energy, water and carbon. The model has a coarse spatial resolution, nevertheless capturing the major features of the Earths geography. The model describes temporal variability of the system on seasonal and longer time scales. Due to the fact that the model does not employ flux adjustments and has a fast turnaround time, it can be used to study climates significantly different from the present one and to perform long-term (multimillennia) simulations. The comparison of the model results with present climate data show that the model successfully describes the seasonal variability of a large set of characteristics of the climate system, including radiative balance, temperature, precipitation, ocean circulation and cryosphere.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Slowing down as an early warning signal for abrupt climate change

Vasilis Dakos; Marten Scheffer; Egbert H. van Nes; Victor Brovkin; Vladimir Petoukhov; Hermann Held

In the Earths history, periods of relatively stable climate have often been interrupted by sharp transitions to a contrasting state. One explanation for such events of abrupt change is that they happened when the earth system reached a critical tipping point. However, this remains hard to prove for events in the remote past, and it is even more difficult to predict if and when we might reach a tipping point for abrupt climate change in the future. Here, we analyze eight ancient abrupt climate shifts and show that they were all preceded by a characteristic slowing down of the fluctuations starting well before the actual shift. Such slowing down, measured as increased autocorrelation, can be mathematically shown to be a hallmark of tipping points. Therefore, our results imply independent empirical evidence for the idea that past abrupt shifts were associated with the passing of critical thresholds. Because the mechanism causing slowing down is fundamentally inherent to tipping points, it follows that our way to detect slowing down might be used as a universal early warning signal for upcoming catastrophic change. Because tipping points in ecosystems and other complex systems are notoriously hard to predict in other ways, this is a promising perspective.


Journal of Geophysical Research | 2010

A link between reduced Barents‐Kara sea ice and cold winter extremes over northern continents

Vladimir Petoukhov; Vladimir Semenov

The recent overall Northern Hemisphere warming was accompanied by several severe northern continental winters, as for example, extremely cold winter 2005/2006 in Europe and northern Asia. Here we show that anomalous decrease of wintertime sea ice concentration in the Barents-Kara (B-K) Seas could bring about extreme cold events like winter 2005/2006. Our simulations with the ECHAM5 general circulation model demonstrate that lower-troposphere heating over the B-K Seas in the Eastern Arctic caused by the sea ice reduction may result in strong anti-cyclonic anomaly over the Polar Ocean and anomalous easterly advection over northern continents. This causes a continental-scale winter cooling reaching -1.5°C, with more than three times increased probability of cold winter extremes over large areas including Europe. Our results imply that several recent severe winters do not conflict the global warming picture but rather supplement it, being in qualitative agreement with the simulated large-scale atmospheric circulation realignment. Furthermore, our results suggest that high-latitude atmospheric circulation response to the B-K sea ice decrease is highly nonlinear and characterized by transition from anomalous cyclonic circulation to anticyclonic one and then again back to cyclonic type of circulation as the B-K sea ice concentration gradually reduces from 100% to ice free conditions. We present a conceptual model which may explain the nonlinear local atmospheric response in the B-K Seas region by counter play between convection over the surface heat source and baroclinic effect due to modified temperature gradients in the vicinity of the heating area.


Global Biogeochemical Cycles | 2002

Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model

Victor Brovkin; Jørgen Bendtsen; Martin Claussen; Andrey Ganopolski; Claudia Kubatzki; Vladimir Petoukhov; Andrei Andreev

Holocene was accompanied by significant changes in vegetation cover and an increase inatmosphericCO2concentration.Theessentialquestioniswhetheritispossibletoexplain thesechangesinaconsistentway,accounting fortheorbitalparametersasthemainexternal forcing for the climate system. We investigate this problem using the computationally efficient model of climate system, CLIMBER-2, which includes models for oceanic and terrestrial biogeochemistry. We found that changes in climate and vegetation cover in the northern subtropical and circumpolar regions can be attributed to the changes in the orbital forcing. Explanation of the atmospheric CO2 record requires an additional assumption of excessive CaCO3sedimentation in the ocean. The modeled decrease in the carbonate ion concentration in the deep ocean is similar to that inferred from CaCO3 sediment data [Broecker et al., 1999]. For 8 kyr B.P., the model estimates the terrestrial carbon pool ca. 90 Pg higher than its preindustrial value. Simulated atmospheric d 13 C declines during the


Proceedings of the National Academy of Sciences of the United States of America | 2013

Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes

Vladimir Petoukhov; Stefan Rahmstorf; Stefan Petri; Hans Joachim Schellnhuber

In recent years, the Northern Hemisphere has suffered several devastating regional summer weather extremes, such as the European heat wave in 2003, the Russian heat wave and the Indus river flood in Pakistan in 2010, and the heat wave in the United States in 2011. Here, we propose a common mechanism for the generation of persistent longitudinal planetary-scale high-amplitude patterns of the atmospheric circulation in the Northern Hemisphere midlatitudes. Those patterns—with zonal wave numbers m = 6, 7, or 8—are characteristic of the above extremes. We show that these patterns might result from trapping within midlatitude waveguides of free synoptic waves with zonal wave numbers k ≈ m. Usually, the quasistationary dynamical response with the above wave numbers m to climatological mean thermal and orographic forcing is weak. Such midlatitude waveguides, however, may favor a strong magnification of that response through quasiresonance.


Geophysical Research Letters | 2002

Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model

Reinhard Calov; Andrey Ganopolski; Vladimir Petoukhov; Martin Claussen; Ralf Greve

[1] Heinrich events, related to large-scale surges of the Laurentide ice sheet, represent one of the most dramatic types of abrupt climate change occurring during the last glacial. Here, using a coupled atmosphere-ocean-biosphereice sheet model, we simulate quasi-periodic large-scale surges from the Laurentide ice sheet. The average time between simulated events is about 7,000 yrs, while the surging phase of each event lasts only several hundred years, with a total ice volume discharge corresponding to 5–10 m of sea level rise. In our model the simulated ice surges represent internal oscillations of the ice sheet. At the same time, our results suggest the possibility of a synchronization between instabilities of different ice sheets, as indicated in paleoclimate records. INDEX TERMS: 1827 Hydrology: Glaciology (1863); 1620 Global Change: Climate dynamics (3309); 3344 Meteorology and Atmospheric Dynamics: Paleoclimatology; 5416 Planetology: Solid Surface Planets: Glaciation. Citation: Calov, R., A. Ganopolski, V. Petoukhov, M. Claussen, and R. Greve, Largescale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model, Geophys. Res. Lett., 29(24), 2216, doi:10.1029/2002GL016078, 2002.


Climatic Change | 2003

Climate change in northern Africa: The past is not the future

Martin Claussen; Victor Brovkin; Andrey Ganopolski; Claudia Kubatzki; Vladimir Petoukhov; H. Becker Weg

By using a climate system model of intermediate complexity, we have simulated long-term natural climate changes occurring over the last 9000 years. The paleo-simulations in which the model is driven by orbital forcing only, i.e., by changes in insolation caused by changes in the Earths orbit, are compared with sensitivity simulations in which various scenarios of increasing atmospheric CO2 concentration are prescribed. Focussing on climate and vegetation change in northern Africa, we recapture the strong greening of the Sahara in the early and mid-Holocene (some 9000–6000 years ago), and we show that some expansion of grasslandinto the Sahara is theoretically possible, if the atmospheric CO2 concentration increases well above pre-industrial values and if vegetation growth is not disturbed. Depending on the rate of CO2 increase, vegetation migration into the Sahara can be rapid, up to 1/10th of the Saharan area per decade, but could not exceed a coverage of 45%. In ourmodel, vegetation expansion into todays Sahara is triggered by an increase in summer precipitation which is amplified by a positive feedback between vegetation and precipitation. This is valid for simulations with orbital forcing and greenhouse-gas forcing. However, we argue that the mid-Holocene climate optimum some 9000 to 6000 years ago with its marked reduction of deserts in northern Africa is not a direct analogue for future greenhouse-gas induced climate change, as previously hypothesized. Not only does the global pattern of climate change differ between the mid-Holocene model experiments and the greenhouse-gas sensitivity experiments, but the relative role of mechanisms which lead to a reduction of the Sahara also changes. Moreover, the amplitude of simulated vegetation cover changes in northern Africa is less than is estimated for mid-Holocene climate.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer

Dim Coumou; Vladimir Petoukhov; Stefan Rahmstorf; Stefan Petri; Hans Joachim Schellnhuber

Significance The recent decade has seen an exceptional number of boreal summer weather extremes, some causing massive damage to society. There is a strong scientific debate about the underlying causes of these events. We show that high-amplitude quasi-stationary Rossby waves, associated with resonance circulation regimes, lead to persistent surface weather conditions and therefore to midlatitude synchronization of extreme heat and rainfall events. Since the onset of rapid Arctic amplification around 2000, a cluster of resonance circulation regimes is observed involving wave numbers 7 and 8. This has resulted in a statistically significant increase in the frequency of high-amplitude quasi-stationary waves with these wave numbers. Our findings provide important insights regarding the link between Arctic changes and midlatitude extremes. The recent decade has seen an exceptional number of high-impact summer extremes in the Northern Hemisphere midlatitudes. Many of these events were associated with anomalous jet stream circulation patterns characterized by persistent high-amplitude quasi-stationary Rossby waves. Two mechanisms have recently been proposed that could provoke such patterns: (i) a weakening of the zonal mean jets and (ii) an amplification of quasi-stationary waves by resonance between free and forced waves in midlatitude waveguides. Based upon spectral analysis of the midtroposphere wind field, we show that the persistent jet stream patterns were, in the first place, due to an amplification of quasi-stationary waves with zonal wave numbers 6–8. However, we also detect a weakening of the zonal mean jet during these events; thus both mechanisms appear to be important. Furthermore, we demonstrate that the anomalous circulation regimes lead to persistent surface weather conditions and therefore to midlatitude synchronization of extreme heat and rainfall events on monthly timescales. The recent cluster of resonance events has resulted in a statistically significant increase in the frequency of high-amplitude quasi-stationary waves of wave numbers 7 and 8 in July and August. We show that this is a robust finding that holds for different pressure levels and reanalysis products. We argue that recent rapid warming in the Arctic and associated changes in the zonal mean zonal wind have created favorable conditions for double jet formation in the extratropics, which promotes the development of resonant flow regimes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Basic mechanism for abrupt monsoon transitions.

Anders Levermann; Jacob Schewe; Vladimir Petoukhov; Hermann Held

Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R c, no conventional monsoon can develop; above R c, two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R c for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation.

Collaboration


Dive into the Vladimir Petoukhov's collaboration.

Top Co-Authors

Avatar

Andrey Ganopolski

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Rahmstorf

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

A. V. Eliseev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Claudia Kubatzki

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Stefan Petri

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Dim Coumou

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Hans Joachim Schellnhuber

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

J. Krabec

International Institute for Applied Systems Analysis

View shared research outputs
Researchain Logo
Decentralizing Knowledge