Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Víctor Matamoros is active.

Publication


Featured researches published by Víctor Matamoros.


Critical Reviews in Environmental Science and Technology | 2010

Contaminant Removal Processes in Subsurface-Flow Constructed Wetlands: A Review

Joan García; Diederik P. L. Rousseau; Jordi Morató; Els Lesage; Víctor Matamoros; Josep M. Bayona

The main contaminant removal processes occurring in subsurface-flow constructed wetlands treating wastewater are reviewed. Redox conditions prevailing in the wetlands are analyzed and linked to contaminant removal mechanisms. The removal of organic matter and its accumulation in the granular medium of the wetlands are evaluated with regard to particulate and dissolved components and clogging processes. The main biological processes linked to organic matter transformation—aerobic respiration, denitrification, acid fermentation, sulfate reduction, and methanogenesis—are reviewed separately. The processes of removal of surfactants, pesticides and herbicides, emergent contaminants, nutrients, heavy metals and faecal organisms are analyzed. Advances in wetland modeling are presented as a powerful tool for understanding multiple interactions occurring in subsurface-flow constructed wetlands during the removal of contaminants.


Water Research | 2009

Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products

Víctor Matamoros; Carlos A. Arias; Hans Brix; Josep M. Bayona

Occurrence and removal efficiencies of 13 pharmaceuticals and personal care products (PPCPs) as well as BOD(5), TSS and NH(4)(+) were evaluated for the first time in thirteen onsite household secondary wastewater treatment systems, including two compact biofilters followed by Filtralite-P filter units, two biological sand filters, five horizontal subsurface flow and four vertical flow constructed wetlands. As expected, all systems removed TSS and BOD(5) efficiently (>95% removal). The PPCP removal efficiencies exceeded 80% with the exception of carbamazepine, diclofenac and ketoprofen because of their more recalcitrant characteristics. Despite no statistical differences in the PPCP removal were observed between the different systems evaluated, the vegetated vertical flow constructed wetlands which had unsaturated flow and hence better oxygenation, appeared consistently to perform better in terms of PPCP removal efficiency. The combined effects of vegetation and unsaturated water flow provide a higher tolerance to variations in loading rate and a consistent removal rate.


Water Research | 2010

Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters

María Hijosa-Valsero; Víctor Matamoros; Ricardo Sidrach-Cardona; Javier Martín-Villacorta; Eloy Bécares; Josep M. Bayona

Seven mesocosm-scale constructed wetlands (CWs) of different configurations were operated outdoors for nine months to assess their ability to remove pharmaceuticals and personal care products (PPCPs) from urban wastewaters. CWs differed in some design parameters, namely the presence of plants, the species chosen (i.e., Typha angustifolia vs Phragmites australis), flow configuration (i.e., surface flow vs subsurface flow) and the presence of a gravel bed. A nearby conventional activated-sludge wastewater treatment plant (WWTP) fed with the same sewage was simultaneously monitored for comparison. The PPCPs ketoprofen, naproxen, ibuprofen, diclofenac, salicylic acid, carbamazepine, caffeine, galaxolide, tonalide and methyl dihydrojasmonate were monitored. The presence of plants favoured the removal of some PPCPs. The performance of the mesocosm studied was compound-dependant, soilless CWs showing the highest removal efficiency for ketoprofen, ibuprofen and carbamazepine, while free-water CWs with effluent leaving through the bottom of the tank performed well for the degradation of ketoprofen, salicylic acid, galaxolide and tonalide. Finally, subsurface horizontal flow CWs were efficient for the removal of caffeine. Significant linear correlations were observed between the removal of some PPCPs and temperature or redox potential. Hence, microbiological pathways appear to be the most probable degradation route for PPCPs in the CWs studied.


Water Research | 2010

Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities.

María Hijosa-Valsero; Víctor Matamoros; Javier Martín-Villacorta; Eloy Bécares; Josep M. Bayona

This study assessed the ability to remove pharmaceuticals and personal care products (PPCPs) of three different full-scale hybrid pond-constructed wetlands and a conventional wastewater treatment plant (WWTP). The four systems were fed with primary-treated urban wastewaters. The three hybrid systems consisted of several different subsystems (ponds, surface flow constructed wetlands and horizontal subsurface flow constructed wetlands) connected in series, and their PPCP degradation efficiency was monitored. In addition, the enantiomeric behaviour of ibuprofen was studied in all the subsystems. The hybrid systems were at least as efficient in PPCP removal as the WWTP, removal efficiencies mainly exceeding 70%. Moreover, enantiomeric analysis indicates that ibuprofen removal followed a predominantly aerobic and microbiological pathway. Constructed wetlands and ponds are therefore successful technologies for removing PPCPs from wastewater and the most significant removal process in these systems is biologically mediated.


Water Research | 2011

Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading

Diana Calderón-Preciado; C. Jiménez-Cartagena; Víctor Matamoros; Josep M. Bayona

Reclaimed water usage for crop irrigation is viewed both as an excellent sustainable water source and as a potential entrance for emerging organics into the food chain. This concern is backed by the already documented pollutant crop uptake potential. In the present study, irrigation waters used in agricultural fields (Torroella de Montgri, NE Spain) were screened for 47 analytes in a two year study (2007-2008). A total of 26 contaminants belonging to different chemical classes namely, pesticides, pharmaceuticals, personal care products, phenolic estrogens, antioxidants and disinfection by-products, were detected. Marked differences in concentration trends for the different chemical classes were evidenced from 2007 to 2008, and attributed to a persistent drought endured by the region in 2008. Also, loading mass rates of chemical classes were estimated based on crop irrigation regimes and they ranged from 0.8 to 121.3 g ha(-1) per crop cycle. These values were contrasted with those obtained for other water sources from countries where crop irrigation is commonly practiced. Finally, crops grown under these irrigation regimes, namely alfalfa and apple, were analyzed and 5 anthropogenic compounds were identified and quantitated, whose concentrations ranged from 13.9 to 532 ng g(-1) (fresh weight).


Analytical Chemistry | 2010

Part-per-Trillion Determination of Pharmaceuticals, Pesticides, and Related Organic Contaminants in River Water by Solid-Phase Extraction Followed by Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry

Víctor Matamoros; Eric Jover; Josep M. Bayona

An analytical procedure based on comprehensive two-dimensional gas chromatography (GC x GC) coupled with time-of-flight mass spectrometry (TOF-MS) for the simultaneous determination of 97 organic contaminants at trace concentration in river water is presented. The target analytes included 13 pharmaceuticals, 18 plasticizers, 8 personal care products, 9 acid herbicides, 8 triazines, 10 organophosphorous compounds, 5 phenylureas, 12 organochlorine biocides, 9 polycyclic aromatic hydrocarbons (PAHs), and 5 benzothiazoles and benzotriazoles. The best resolution of the target analytes in the contour plots was obtained when a nonpolar stationary phase was used in the first dimension and polar one in the second. However, in the opposite configuration, polar-nonpolar, the retention time in the second dimension exhibited a strong correlation with the log Kow (p < 0.01), and it was proposed as an additional identification criteria. The developed methodology is based on a polymeric solid-phase extraction followed by in GC-port methylation and GC x GC/TOF-MS determination. Moreover, limits of detection (LODs) and quantification (LOQs) ranged from 0.5 to 100 ng/L and from 2 to 185 ng/L, respectively. Repeatability was always lower than 20%. Finally, the developed method has been successfully applied to the determination of incurred target analytes in four river waters subjected to a different anthropogenic pressure.


Chemosphere | 2009

Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen.

Víctor Matamoros; María Hijosa; Josep M. Bayona

The enantioselective degradation of ibuprofen and naproxen enantiomers was evaluated in five different wastewater treatment systems, including three constructed wetlands (vertical- and horizontal-flow configurations), a sand filter and an activated sludge wastewater treatment plant. In addition, injection experiments were carried out with racemic ibuprofen at microcosm- and pilot-scale constructed wetlands. Ibuprofen and naproxen have an asymmetric carbon atom and, consequently, two enantiomeric forms (i.e. S and R). The enantiomeric fraction (EF=S/(S+R)) in the raw sewage and effluents of various wastewater treatments were found to be compound-dependent (i.e. ibuprofen: EF(influent)=0.73-0.90, EF(effluent)=0.60-0.76; naproxen: EF(influent)=0.88-0.90, EF(effluent)=0.71-0.86). Of the two chiral pharmaceuticals, naproxen was the only one whose effluent EF correlated with its removal efficiency (p<0.05). The lack of correlation found for ibuprofen was attributable to the fact that its enantioselective degradation kinetics were different under prevailing aerobic and anaerobic conditions. Injection experiments of ibuprofen in constructed wetlands at microcosm and pilot-scale followed similar trends. Hence, under prevailing aerobic conditions, S-ibuprofen degraded faster than R-ibuprofen, whereas under prevailing anaerobic conditions, the degradation was not enantioselective. In summary, the naproxen EF measurements in wastewater effluents show that naproxen is a suitable alternative for evaluating the removal efficiency of treatment systems because its enantioselective degradation is similar under prevailing aerobic and anaerobic conditions.


Science of The Total Environment | 2008

Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment

Víctor Matamoros; Aracelly Caselles-Osorio; Joan García; Josep M. Bayona

Horizontal subsurface flow constructed wetlands (SSFCWs) are a cost-effective and sustainable alternative to conventional wastewater treatment plants (WWTPs) for sanitation in small communities. SSFCWs are designed to remove suspended solids and organic matter from wastewater but there is little information on the effect of the characteristics of organic matter on the removal efficiency of specific contaminants. In this paper, carbamazepine, ibuprofen and clofibric acid were continuously injected into two SSFCW microcosms fed with synthetic wastewater containing different organic matter sources: dissolved (glucose) and particulate (starch). The response curves of carbamazepine and ibuprofen were compared with that of clofibric acid, which was used as a conservative tracer. The removal efficiencies were found to be independent of the organic matter type (i.e. dissolved or particulate). Carbamazepine was removed inefficiently (5%) by bed sorption, whereas ibuprofen was removed by degradation (51%). In addition, the behaviour of the two main ibuprofen biodegradation intermediates (carboxy and hydroxy derivatives) supported that the main ibuprofen elimination pathway occurs in aerobic conditions.


Chemosphere | 2012

Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants

Víctor Matamoros; Victòria Salvadó

The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters.


Chemosphere | 2012

Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment

Víctor Matamoros; Loc Xuan Nguyen; Carlos A. Arias; Victòria Salvadó; Hans Brix

Microcosm wetland systems (5 L containers) planted with Salvinia molesta, Lemna minor, Ceratophyllum demersum, and Elodea canadensis were investigated for the removal of diclofenac, triclosan, naproxen, ibuprofen, caffeine, clofibric acid and MCPA. After 38 days of incubation, 40-99% of triclosan, diclofenac, and naproxen were removed from the planted and unplanted reactors. In covered control reactors no removal was observed. Caffeine and ibuprofen were removed from 40% to 80% in planted reactors whereas removals in control reactors were much lower (2-30%). Removal of clofibric acid and MCPA were negligible in both planted and unplanted reactors. The findings suggested that triclosan, diclofenac, and naproxen were removed predominantly by photodegradation, whereas caffeine and naproxen were removed by biodegradation and/or plant uptake. Pseudo-first-order removal rate constants estimated from nonlinear regressions of time series concentration data were used to describe the contaminant removals. Removal rate constants ranged from 0.003 to 0.299 d(-1), with half-lives from 2 to 248 days. The formation of two major degradation products from ibuprofen, carboxy-ibuprofen and hydroxy-ibuprofen, and a photodegradation product from diclofenac, 1-(8-Chlorocarbazolyl)acetic acid, were followed as a function of time. This study emphasizes that plants contribute to the elimination capacity of microcontaminants in wetlands systems through biodegradation and uptake processes.

Collaboration


Dive into the Víctor Matamoros's collaboration.

Top Co-Authors

Avatar

Josep M. Bayona

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Joan García

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Calderón-Preciado

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Jover

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge