Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor W. Wong is active.

Publication


Featured researches published by Victor W. Wong.


Nature Medicine | 2012

Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling

Victor W. Wong; Kristine C. Rustad; Satoshi Akaishi; Michael Sorkin; Jason P. Glotzbach; Michael Januszyk; Emily R. Nelson; Kemal Levi; Josemaria Paterno; Ivan N. Vial; Anna A. Kuang; Michael T. Longaker; Geoffrey C. Gurtner

Exuberant fibroproliferation is a common complication after injury for reasons that are not well understood. One key component of wound repair that is often overlooked is mechanical force, which regulates cell-matrix interactions through intracellular focal adhesion components, including focal adhesion kinase (FAK). Here we report that FAK is activated after cutaneous injury and that this process is potentiated by mechanical loading. Fibroblast-specific FAK knockout mice have substantially less inflammation and fibrosis than control mice in a model of hypertrophic scar formation. We show that FAK acts through extracellular-related kinase (ERK) to mechanically trigger the secretion of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), a potent chemokine that is linked to human fibrotic disorders. Similarly, MCP-1 knockout mice form minimal scars, indicating that inflammatory chemokine pathways are a major mechanism by which FAK mechanotransduction induces fibrosis. Small-molecule inhibition of FAK blocks these effects in human cells and reduces scar formation in vivo through attenuated MCP-1 signaling and inflammatory cell recruitment. These findings collectively indicate that physical force regulates fibrosis through inflammatory FAK–ERK–MCP-1 pathways and that molecular strategies targeting FAK can effectively uncouple mechanical force from pathologic scar formation.


BioMed Research International | 2011

Surgical Approaches to Create Murine Models of Human Wound Healing

Victor W. Wong; Michael Sorkin; Jason P. Glotzbach; Michael T. Longaker; Geoffrey C. Gurtner

Wound repair is a complex biologic process which becomes abnormal in numerous disease states. Although in vitro models have been important in identifying critical repair pathways in specific cell populations, in vivo models are necessary to obtain a more comprehensive and pertinent understanding of human wound healing. The laboratory mouse has long been the most common animal research tool and numerous transgenic strains and models have been developed to help researchers study the molecular pathways involved in wound repair and regeneration. This paper aims to highlight common surgical mouse models of cutaneous disease and to provide investigators with a better understanding of the benefits and limitations of these models for translational applications.


Annals of Surgery | 2011

Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies.

Geoffrey C. Gurtner; Reinhold H. Dauskardt; Victor W. Wong; Kirit A. Bhatt; Kenneth S. Wu; Ivan N. Vial; Karine Padois; Joshua Korman; Michael T. Longaker

Objective: To test the hypothesis that the mechanical environment of cutaneous wounds can control scar formation. Background: Mechanical forces have been recognized to modulate myriad biologic processes, but the role of physical force in scar formation remains unclear. Furthermore, the therapeutic benefits of offloading cutaneous wounds with a device have not been rigorously tested. Methods: A mechanomodulating polymer device was utilized to manipulate the mechanical environment of closed cutaneous wounds in red Duroc swine. After 8 weeks, wounds subjected to different mechanical stress states underwent immunohistochemical analysis for fibrotic markers. In a phase I clinical study, 9 human patients undergoing elective abdominal surgery were treated postoperatively with a stress-shielding polymer on one side whereas the other side was treated as standard of care. Professional photographs were taken between 8 and 12 months postsurgery and evaluated using a visual analog scale by lay and professional panels. This study is registered with ClinicalTrials.gov, number NCT00766727. Results: Stress shielding of swine incisions reduced histologic scar area by 6- and 9-fold compared to control and elevated stress states, respectively (P < 0.01 for both) and dramatically decreased the histologic expression of profibrotic markers. Closure of high-tension wounds induced human-like scar formation in the red Duroc, a phenotype effectively mitigated with stress shielding of wounds. In the study on humans, stress shielding of abdominal incisions significantly improved scar appearance (P = 0.004) compared with within-patient controls. Conclusions: These results indicate that mechanical manipulation of the wound environment with a dynamic stress-shielding polymer device can significantly reduce scar formation.


Journal of Investigative Dermatology | 2011

Pushing Back: Wound Mechanotransduction in Repair and Regeneration

Victor W. Wong; Satoshi Akaishi; Michael T. Longaker; Geoffrey C. Gurtner

Human skin is a highly specialized mechanoresponsive interface separating our bodies from the external environment. It must constantly adapt to dynamic physical cues ranging from rapid expansion during embryonic and early postnatal development to ubiquitous external forces throughout life. Despite the suspected role of the physical environment in cutaneous processes, the fundamental molecular mechanisms responsible for how skin responds to force remain unclear. Intracellular pathways convert mechanical cues into biochemical responses (in a process known as mechanotransduction) via complex mechanoresponsive elements that often blur the distinction between physical and chemical signaling. For example, cellular focal adhesion components exhibit dual biochemical and scaffolding functions that are critically modulated by force. Moreover, the extracellular matrix itself is increasingly recognized to mechanically regulate the spatiotemporal distribution of soluble and matrix-bound ligands, underscoring the importance of bidirectional crosstalk between cells and their physical environment. It seems likely that a structural hierarchy exists to maintain both cells and matrix in mechanical homeostasis and that dysregulation of this architectural integrity may underlie or contribute to various skin disorders. An improved understanding of these interactions will facilitate the development of novel biophysical materials and mechanomodulatory approaches to augment wound repair and regeneration.


Cell Cycle | 2010

HIF-1α dysfunction in diabetes

Hariharan Thangarajah; Ivan N. Vial; Raymon H. Grogan; Dachun Yao; Yubin Shi; Michael Januszyk; Robert D. Galiano; Edward I. Chang; Michael G. Galvez; Jason P. Glotzbach; Victor W. Wong; Michael Brownlee; Geoffrey C. Gurtner

Diabetic wounds are a significant public health burden, with slow or non-healing diabetic foot ulcers representing the leading cause of non-traumatic lower limb amputation in developed countries. These wounds heal poorly as a result of compromised blood vessel formation in response to ischemia. We have recently shown that this impairment in neovascularization results from a high glucose-induced defect in transactivation of hypoxia-inducible factor-1α (HIF-1α), the transcription factor regulating vascular endothelial growth factor (VEGF) expression. HIF-1 dysfunction is the end result of reactive oxygen species-induced modification of its coactivator p300 by the glycolytic metabolite methylglyoxal. Use of the iron chelator-antioxidant deferoxamine (DFO) reversed these effects and normalized healing of humanized diabetic wounds in mice. Here, we present additional data demonstrating that HIF-1α activity, not stability, is impaired in the high glucose environment. We demonstrate that high glucose-induced impairments in HIF-1α transactivation persist even in the setting of constitutive HIF-1α protein overexpression. Further, we show that high glucose-induced hydroxylation of the C-terminal transactivation domain of HIF-1α (the primary pathway regulating HIF-1α/p300 binding) does not alter HIF-1α activity. We extend our study of DFO’s therapeutic efficacy in the treatment of impaired wound healing by demonstrating improvements in tissue viability in diabetic mice with DFO-induced increases in VEGF expression and vascular proliferation. Since DFO has been in clinical use for decades, the potential of this drug to treat a variety of ischemic conditions in humans can be evaluated relatively quickly.


Macromolecular Bioscience | 2011

Pullulan Hydrogels Improve Mesenchymal Stem Cell Delivery into High‐Oxidative‐Stress Wounds

Victor W. Wong; Kristine C. Rustad; Jason P. Glotzbach; Michael Sorkin; Mohammed Inayathullah; Melanie R. Major; Michael T. Longaker; Jayakumar Rajadas; Geoffrey C. Gurtner

Cell-based therapies for wound repair are limited by inefficient delivery systems that fail to protect cells from the acute inflammatory environment. Here, a biomimetic hydrogel system is described that is based on the polymer pullulan, a carbohydrate glucan known to exhibit potent antioxidant capabilities. It is shown that pullulan hydrogels are an effective cell delivery system and improve mesenchymal stem cell survival and engraftment in high-oxidative-stress environments. The results suggest that glucan hydrogel systems may prove beneficial for progenitor-cell-based approaches to skin regeneration.


The FASEB Journal | 2011

Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation

Victor W. Wong; Josemaria Paterno; Michael Sorkin; Jason P. Glotzbach; Kemal Levi; Michael Januszyk; Kristine C. Rustad; Michael T. Longaker; Geoffrey C. Gurtner

Mechanical force significantly modulates both inflammation and fibrosis, yet the fundamental mechanisms that regulate these interactions remain poorly understood. Here we performed microarray analysis to compare gene expression in mechanically loaded wounds vs. unloaded control wounds in an established murine hypertrophic scar (HTS) model. We identified 853 mechanically regulated genes (false discovery rate <2) at d 14 postinjury, a subset of which were enriched for T‐cell‐regulated pathways. To substantiate the role of T cells in scar mechanotransduction, we applied the HTS model to T‐cell‐deficient mice and wild‐type mice. We found that scar formation in T‐cell‐deficient mice was reduced by almost 9‐fold (P < 0.001) with attenuated epidermal (by 2.6‐fold, P < 0.01) and dermal (3.9‐fold, P < 0.05) proliferation. Mechanical stimulation was highly associated with sustained T‐cell‐dependent Th2 cytokine (IL‐4 and IL‐13) and chemokine (MCP‐1) signaling. Further, T‐cell‐deficient mice failed to recruit systemic inflammatory cells such as macrophages or monocytic fibroblast precursors in response to mechanical loading. These findings indicate that T‐cell‐regulated fibrogenic pathways are highly mechanoresponsive and suggest that mechanical forces induce a chronic‐like inflammatory state through immune‐dependent activation of both local and systemic cell populations.—Wong, V. W., Paterno, J., Sorkin, M., Glotzbach, J. P., Levi, K., Januszyk, M., Rustad, K. C., Longaker, M. T., Gurtner, G. C. Mechanical force prolongs acute inflammation via T‐cell‐dependent pathways during scar formation. FASEB J. 25, 4498–4510 (2011). www.fasebj.org


Gerontology | 2016

Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review

Dominik Duscher; Janos Barrera; Victor W. Wong; Zeshaan N. Maan; Alexander J. Whittam; Michael Januszyk; Geoffrey C. Gurtner

The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption.


Journal of Biomechanics | 2014

Mechanotransduction and fibrosis

Dominik Duscher; Zeshaan N. Maan; Victor W. Wong; Robert C. Rennert; Michael Januszyk; Melanie Rodrigues; Michael Hu; Arnetha J. Whitmore; Alexander J. Whittam; Michael T. Longaker; Geoffrey C. Gurtner

Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.


Seminars in Cell & Developmental Biology | 2012

Soft tissue mechanotransduction in wound healing and fibrosis

Victor W. Wong; Michael T. Longaker; Geoffrey C. Gurtner

Recent evidence suggests that mechanical forces can significantly impact the biologic response to injury. Integrated mechanical and chemical signaling networks have been discovered that enable physical cues to regulate disease processes such as pathologic scar formation. Distinct molecular mechanisms control how tensional forces influence wound healing and fibrosis. Conceptual frameworks to understand cutaneous repair have expanded beyond traditional cell-cytokine models to include dynamic interactions driven by mechanical force and the extracellular matrix. Strategies to manipulate these biomechanical signaling networks have tremendous therapeutic potential to reduce scar formation and promote skin regeneration.

Collaboration


Dive into the Victor W. Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge