Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ivan N. Vial is active.

Publication


Featured researches published by Ivan N. Vial.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues

Hariharan Thangarajah; Dachun Yao; Edward I. Chang; Yubin Shi; Leila Jazayeri; Ivan N. Vial; Robert D. Galiano; Xue Liang Du; Raymon H. Grogan; Michael G. Galvez; Michael Januszyk; Michael Brownlee; Geoffrey C. Gurtner

Diabetes is associated with poor outcomes following acute vascular occlusive events. This results in part from a failure to form adequate compensatory microvasculature in response to ischemia. Since vascular endothelial growth factor (VEGF) is an essential mediator of neovascularization, we examined whether hypoxic up-regulation of VEGF was impaired in diabetes. Both fibroblasts isolated from type 2 diabetic patients, and normal fibroblasts exposed chronically to high glucose, were defective in their capacity to up-regulate VEGF in response to hypoxia. In vivo, diabetic animals demonstrated an impaired ability to increase VEGF production in response to soft tissue ischemia. This resulted from a high glucose-induced decrease in transactivation by the transcription factor hypoxia-inducible factor-1α (HIF-1α), which mediates hypoxia-stimulated VEGF expression. Decreased HIF-1α functional activity was specifically caused by impaired HIF-1α binding to the coactivator p300. We identify covalent modification of p300 by the dicarbonyl metabolite methylglyoxal as being responsible for this decreased association. Administration of deferoxamine abrogated methylglyoxal conjugation, normalizing both HIF-1α/p300 interaction and transactivation by HIF-1α. In diabetic mice, deferoxamine promoted neovascularization and enhanced wound healing. These findings define molecular defects that underlie impaired VEGF production in diabetic tissues and offer a promising direction for therapeutic intervention.


Nature Medicine | 2012

Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling

Victor W. Wong; Kristine C. Rustad; Satoshi Akaishi; Michael Sorkin; Jason P. Glotzbach; Michael Januszyk; Emily R. Nelson; Kemal Levi; Josemaria Paterno; Ivan N. Vial; Anna A. Kuang; Michael T. Longaker; Geoffrey C. Gurtner

Exuberant fibroproliferation is a common complication after injury for reasons that are not well understood. One key component of wound repair that is often overlooked is mechanical force, which regulates cell-matrix interactions through intracellular focal adhesion components, including focal adhesion kinase (FAK). Here we report that FAK is activated after cutaneous injury and that this process is potentiated by mechanical loading. Fibroblast-specific FAK knockout mice have substantially less inflammation and fibrosis than control mice in a model of hypertrophic scar formation. We show that FAK acts through extracellular-related kinase (ERK) to mechanically trigger the secretion of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), a potent chemokine that is linked to human fibrotic disorders. Similarly, MCP-1 knockout mice form minimal scars, indicating that inflammatory chemokine pathways are a major mechanism by which FAK mechanotransduction induces fibrosis. Small-molecule inhibition of FAK blocks these effects in human cells and reduces scar formation in vivo through attenuated MCP-1 signaling and inflammatory cell recruitment. These findings collectively indicate that physical force regulates fibrosis through inflammatory FAK–ERK–MCP-1 pathways and that molecular strategies targeting FAK can effectively uncouple mechanical force from pathologic scar formation.


Annals of Surgery | 2011

Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies.

Geoffrey C. Gurtner; Reinhold H. Dauskardt; Victor W. Wong; Kirit A. Bhatt; Kenneth S. Wu; Ivan N. Vial; Karine Padois; Joshua Korman; Michael T. Longaker

Objective: To test the hypothesis that the mechanical environment of cutaneous wounds can control scar formation. Background: Mechanical forces have been recognized to modulate myriad biologic processes, but the role of physical force in scar formation remains unclear. Furthermore, the therapeutic benefits of offloading cutaneous wounds with a device have not been rigorously tested. Methods: A mechanomodulating polymer device was utilized to manipulate the mechanical environment of closed cutaneous wounds in red Duroc swine. After 8 weeks, wounds subjected to different mechanical stress states underwent immunohistochemical analysis for fibrotic markers. In a phase I clinical study, 9 human patients undergoing elective abdominal surgery were treated postoperatively with a stress-shielding polymer on one side whereas the other side was treated as standard of care. Professional photographs were taken between 8 and 12 months postsurgery and evaluated using a visual analog scale by lay and professional panels. This study is registered with ClinicalTrials.gov, number NCT00766727. Results: Stress shielding of swine incisions reduced histologic scar area by 6- and 9-fold compared to control and elevated stress states, respectively (P < 0.01 for both) and dramatically decreased the histologic expression of profibrotic markers. Closure of high-tension wounds induced human-like scar formation in the red Duroc, a phenotype effectively mitigated with stress shielding of wounds. In the study on humans, stress shielding of abdominal incisions significantly improved scar appearance (P = 0.004) compared with within-patient controls. Conclusions: These results indicate that mechanical manipulation of the wound environment with a dynamic stress-shielding polymer device can significantly reduce scar formation.


Stem Cells | 2009

IFATS Collection: Adipose Stromal Cells Adopt a Proangiogenic Phenotype Under the Influence of Hypoxia

Hariharan Thangarajah; Ivan N. Vial; Edwin Chang; Samyra El-ftesi; Michael Januszyk; Edward I. Chang; Josemaria Paterno; Evgenios Neofytou; Michael T. Longaker; Geoffrey C. Gurtner

Evolving evidence suggests a possible role for adipose stromal cells (ASCs) in adult neovascularization, although the specific cues that stimulate their angiogenic behavior are poorly understood. We evaluated the effect of hypoxia, a central mediator of new blood vessel development within ischemic tissue, on proneovascular ASC functions. Murine ASCs were exposed to normoxia (21% oxygen) or hypoxia (5%, 1% oxygen) for varying lengths of time. Vascular endothelial growth factor (VEGF) secretion by ASCs increased as an inverse function of oxygen tension, with progressively higher VEGF expression at 21%, 5%, and 1% oxygen, respectively. Greater VEGF levels were also associated with longer periods in culture. ASCs were able to migrate towards stromal cell‐derived factor (SDF)‐1, a chemokine expressed by ischemic tissue, with hypoxia augmenting ASC expression of the SDF‐1 receptor (CXCR4) and potentiating ASC migration. In vivo, ASCs demonstrated the capacity to proliferate in response to a hypoxic insult remote from their resident niche, and this was supported by in vitro studies showing increasing ASC proliferation with greater degrees of hypoxia. Hypoxia did not significantly alter the expression of endothelial surface markers by ASCs. However, these cells did assume an endothelial phenotype as evidenced by their ability to tubularize when seeded with differentiated endothelial cells on Matrigel. Taken together, these data suggest that ASCs upregulate their proneovascular activity in response to hypoxia, and may harbor the capacity to home to ischemic tissue and function cooperatively with existing vasculature to promote angiogenesis. STEM CELLS 2009;27:266–274


Cell Cycle | 2010

HIF-1α dysfunction in diabetes

Hariharan Thangarajah; Ivan N. Vial; Raymon H. Grogan; Dachun Yao; Yubin Shi; Michael Januszyk; Robert D. Galiano; Edward I. Chang; Michael G. Galvez; Jason P. Glotzbach; Victor W. Wong; Michael Brownlee; Geoffrey C. Gurtner

Diabetic wounds are a significant public health burden, with slow or non-healing diabetic foot ulcers representing the leading cause of non-traumatic lower limb amputation in developed countries. These wounds heal poorly as a result of compromised blood vessel formation in response to ischemia. We have recently shown that this impairment in neovascularization results from a high glucose-induced defect in transactivation of hypoxia-inducible factor-1α (HIF-1α), the transcription factor regulating vascular endothelial growth factor (VEGF) expression. HIF-1 dysfunction is the end result of reactive oxygen species-induced modification of its coactivator p300 by the glycolytic metabolite methylglyoxal. Use of the iron chelator-antioxidant deferoxamine (DFO) reversed these effects and normalized healing of humanized diabetic wounds in mice. Here, we present additional data demonstrating that HIF-1α activity, not stability, is impaired in the high glucose environment. We demonstrate that high glucose-induced impairments in HIF-1α transactivation persist even in the setting of constitutive HIF-1α protein overexpression. Further, we show that high glucose-induced hydroxylation of the C-terminal transactivation domain of HIF-1α (the primary pathway regulating HIF-1α/p300 binding) does not alter HIF-1α activity. We extend our study of DFO’s therapeutic efficacy in the treatment of impaired wound healing by demonstrating improvements in tissue viability in diabetic mice with DFO-induced increases in VEGF expression and vascular proliferation. Since DFO has been in clinical use for decades, the potential of this drug to treat a variety of ischemic conditions in humans can be evaluated relatively quickly.


Plastic and Reconstructive Surgery | 2009

SDF-1α expression during wound healing in the aged is HIF dependent

Shang A. Loh; Edward I. Chang; Michael G. Galvez; Hariharan Thangarajah; Samyra El-ftesi; Ivan N. Vial; Darius A. Lin; Geoffrey C. Gurtner

Background: Age-related impairments in wound healing are associated with decreased neovascularization, a process that is regulated by hypoxia-responsive cytokines, including stromal cell–derived factor (SDF)-1&agr;. Interleukin-1&bgr; is an important inflammatory cytokine involved in wound healing and is believed to regulate SDF-1&agr; expression independent of hypoxia signaling. Thus, the authors examined the relative importance of interleukin (IL)-1&bgr; and hypoxia-inducible factor (HIF)-1&agr; on SDF-1&agr; expression in aged wound healing. Methods: Young and aged mice (n = 4 per group) were examined for wound healing using a murine excisional wound model. Wounds were harvested at days 0, 1, 3, 5, and 7 for histologic analysis, immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot. An engineered wild-type and mutated SDF luciferase reporter construct were used to determine HIF transactivation. Results: Aged mice demonstrated significantly impaired wound healing, reduced granulation tissue, and increased epithelial gap compared with young controls. Real-time polymerase chain reaction demonstrated reduced SDF-1&agr; levels in aged wounds that correlated with reduced CD31+ neovessels. Western blots revealed decreased HIF-1&agr; protein in aged wounds. However, both IL-1&bgr; and macrophage infiltrate were unchanged between young and aged animals. Using the wild-type and mutated SDF luciferase reporter construct in which the hypoxia response element was deleted, only young fibroblasts were able to respond to IL-1&bgr; stimulation, and this response was abrogated by mutating the HIF-binding sites. This suggests that HIF binding is essential for SDF-1 transactivation in response to both inflammatory and hypoxic stimuli. Conclusions: SDF-1&agr; deficiency observed during aged wound healing is attributable predominantly to decreased HIF-1&agr; levels rather than impaired IL-1&bgr; expression.


PLOS ONE | 2011

An Information Theoretic, Microfluidic-Based Single Cell Analysis Permits Identification of Subpopulations among Putatively Homogeneous Stem Cells

Jason P. Glotzbach; Michael Januszyk; Ivan N. Vial; Victor W. Wong; Alexander Gelbard; Tomer Kalisky; Hariharan Thangarajah; Michael T. Longaker; Stephen R. Quake; Gilbert Chu; Geoffrey C. Gurtner

An incomplete understanding of the nature of heterogeneity within stem cell populations remains a major impediment to the development of clinically effective cell-based therapies. Transcriptional events within a single cell are inherently stochastic and can produce tremendous variability, even among genetically identical cells. It remains unclear how mammalian cellular systems overcome this intrinsic noisiness of gene expression to produce consequential variations in function, and what impact this has on the biologic and clinical relevance of highly ‘purified’ cell subgroups. To address these questions, we have developed a novel method combining microfluidic-based single cell analysis and information theory to characterize and predict transcriptional programs across hundreds of individual cells. Using this technique, we demonstrate that multiple subpopulations exist within a well-studied and putatively homogeneous stem cell population, murine long-term hematopoietic stem cells (LT-HSCs). These subgroups are defined by nonrandom patterns that are distinguishable from noise and are consistent with known functional properties of these cells. We anticipate that this analytic framework can also be applied to other cell types to elucidate the relationship between transcriptional and phenotypic variation.


The FASEB Journal | 2009

Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds

Edward I. Chang; Robert G. Bonillas; Samyra El-ftesi; Eric I. Chang; Daniel J. Ceradini; Ivan N. Vial; Denise A. Chan; V. Joseph Michaels; Geoffrey C. Gurtner

Classic tissue engineering paradigms are limited by the incorporation of a functional vasculature and a reliable means for reimplantation into the host circulation. We have developed a novel approach to overcome these obstacles using autologous explanted microcirculatory beds (EMBs) as bioscaffolds for engineering complex three‐dimensional constructs. In this study, EMBs consisting of an afferent artery, capillary beds, efferent vein, and surrounding parenchymal tissue are explanted and maintained for 24 h ex vivo in a bioreactor that preserves EMB viability and function. Given the rapidly advancing field of stem cell biology, EMBs were subsequently seeded with three distinct stem cell populations, multipotent adult progenitor cells (MAPCs), and bone marrow and adipose tissue‐derived mesenchymal stem cells (MSCs). We demonstrate MAPCs, as well as MSCs, are able to egress from the microcirculation into the parenchymal space, forming proliferative clusters. Likewise, human adipose tissue‐derived MSCs were also found to egress from the vasculature and seed into the EMBs, suggesting feasibility of this technology for clinical applications. We further demonstrate that MSCs can be transfected to express a luciferase protein and continue to remain viable and maintain luciferase expression in vivo. By using the vascular network of EMBs, EMBs can be perfused ex vivo and seeded with stem cells, which can potentially be directed to differentiate into neo‐organs or transfected to replace failing organs and deficient proteins.— Chang, E. I., Bonillas, R. G., El‐ftesi, S., Chang, E. I., Ceradini, D. J., Vial, I. N., Chan, D. A., Michaels, J. V, Gurtner, G. C. Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. FASEB J. 23, 906–915 (2009)


Diabetes | 2014

Diabetes Irreversibly Depletes Bone Marrow-Derived Mesenchymal Progenitor Cell Subpopulations

Michael Januszyk; Michael Sorkin; Jason P. Glotzbach; Ivan N. Vial; Zeshaan N. Maan; Robert C. Rennert; Dominik Duscher; Hariharan Thangarajah; Michael T. Longaker; Atul J. Butte; Geoffrey C. Gurtner

Diabetic vascular pathology is largely attributable to impairments in tissue recovery from hypoxia. Circulating progenitor cells have been postulated to play a role in ischemic recovery, and deficiencies in these cells have been well described in diabetic patients. Here, we examine bone marrow–derived mesenchymal progenitor cells (BM-MPCs) that have previously been shown to be important for new blood vessel formation and demonstrate significant deficits in the context of diabetes. Further, we determine that this dysfunction is attributable to intrinsic defects in diabetic BM-MPCs that are not correctable by restoring glucose homeostasis. We identify two transcriptionally distinct subpopulations that are selectively depleted by both type 1 and type 2 diabetes, and these subpopulations have provasculogenic expression profiles, suggesting that they are vascular progenitor cells. These results suggest that the clinically observed deficits in progenitor cells may be attributable to selective and irreversible depletion of progenitor cell subsets in patients with diabetes.


Wound Repair and Regeneration | 2011

Akt-mediated mechanotransduction in murine fibroblasts during hypertrophic scar formation.

Josemaria Paterno; Ivan N. Vial; Victor W. Wong; Kristine C. Rustad; Michael Sorkin; Yubin Shi; Kirit A. Bhatt; Hariharan Thangarajah; Jason P. Glotzbach; Geoffrey C. Gurtner

Although numerous factors are implicated in skin fibrosis, the exact pathophysiology of hypertrophic scarring remains unknown. We recently demonstrated that mechanical force initiates hypertrophic scar formation in a murine model, potentially enhancing cellular survival through Akt. Here, we specifically examined Akt‐mediated mechanotransduction in fibroblasts using both strain culture systems and our murine scar model. In vitro, static strain increased fibroblast motility, an effect blocked by wortmannin (a phosphoinositide‐3‐kinase/Akt inhibitor). We also demonstrated that high‐frequency cyclic strain was more effective at inducing Akt phosphorylation than low frequency or static strain. In vivo, Akt phosphorylation was induced by mechanical loading of dermal fibroblasts in both unwounded and wounded murine skin. Mechanically loaded scars also exhibited strong expression of α‐smooth muscle actin, a putative marker of pathologic scar formation. In vivo inhibition of Akt increased apoptosis but did not significantly abrogate hypertrophic scar development. These data suggest that although Akt signaling is activated in fibroblasts during mechanical loading of skin, this is not the critical pathway in hypertrophic scar formation. Future studies are needed to fully elucidate the critical mechanotransduction components and pathways which activate skin fibrosis.

Collaboration


Dive into the Ivan N. Vial's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge