Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victor X. Jin is active.

Publication


Featured researches published by Victor X. Jin.


Cancer Research | 2004

Loss of Estrogen Receptor Signaling Triggers Epigenetic Silencing of Downstream Targets in Breast Cancer

Yu-Wei Leu; Pearlly S. Yan; Meiyun Fan; Victor X. Jin; Edward M. Curran; Wade V. Welshons; Susan H. Wei; Ramana V. Davuluri; Christoph Plass; Kenneth P. Nephew; Tim H M Huang

Alterations in histones, chromatin-related proteins, and DNA methylation contribute to transcriptional silencing in cancer, but the sequence of these molecular events is not well understood. Here we demonstrate that on disruption of estrogen receptor (ER) α signaling by small interfering RNA, polycomb repressors and histone deacetylases are recruited to initiate stable repression of the progesterone receptor (PR) gene, a known ERα target, in breast cancer cells. The event is accompanied by acquired DNA methylation of the PR promoter, leaving a stable mark that can be inherited by cancer cell progeny. Reestablishing ERα signaling alone was not sufficient to reactivate the PR gene; reactivation of the PR gene also requires DNA demethylation. Methylation microarray analysis further showed that progressive DNA methylation occurs in multiple ERα targets in breast cancer genomes. The results imply, for the first time, the significance of epigenetic regulation on ERα target genes, providing new direction for research in this classical signaling pathway.


Genome Research | 2008

E2F in vivo binding specificity: Comparison of consensus versus nonconsensus binding sites

Alina Rabinovich; Victor X. Jin; Roman Rabinovich; Xiaoqin Xu; Peggy J. Farnham

We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif.


Cancer Research | 2008

N-Myc Regulates a Widespread Euchromatic Program in the Human Genome Partially Independent of Its Role as a Classical Transcription Factor

Rebecca Cotterman; Victor X. Jin; Sheryl R. Krig; Jessica M. Lemen; Alice Wey; Peggy J. Farnham; Paul S. Knoepfler

Myc proteins have long been modeled to operate strictly as classic gene-specific transcription factors; however, we find that N-Myc has a robust role in the human genome in regulating global cellular euchromatin, including that of intergenic regions. Strikingly, 90% to 95% of the total genomic euchromatic marks histone H3 acetylated at lysine 9 and methylated at lysine 4 is N-Myc-dependent. However, Myc regulation of transcription, even of genes it directly binds and at which it is required for the maintenance of active chromatin, is generally weak. Thus, Myc has a much more potent ability to regulate large domains of euchromatin than to influence the transcription of individual genes. Overall, Myc regulation of chromatin in the human genome includes both specific genes, but also expansive genomic domains that invoke functions independent of a classic transcription factor. These findings support a new dual model for Myc chromatin function with important implications for the role of Myc in cancer and stem cell biology, including that of induced pluripotent stem cells.


PLOS ONE | 2010

ZNF274 recruits the histone methyltransferase SETDB1 to the 3' ends of ZNF genes.

Seth Frietze; Henriette O'Geen; Kimberly R. Blahnik; Victor X. Jin; Peggy J. Farnham

Only a small percentage of human transcription factors (e.g. those associated with a specific differentiation program) are expressed in a given cell type. Thus, cell fate is mainly determined by cell type-specific silencing of transcription factors that drive different cellular lineages. Several histone modifications have been associated with gene silencing, including H3K27me3 and H3K9me3. We have previously shown that genes for the two largest classes of mammalian transcription factors are marked by distinct histone modifications; homeobox genes are marked by H3K27me3 and zinc finger genes are marked by H3K9me3. Several histone methyltransferases (e.g. G9a and SETDB1) may be involved in mediating the H3K9me3 silencing mark. We have used ChIP-chip and ChIP-seq to demonstrate that SETDB1, but not G9a, is associated with regions of the genome enriched for H3K9me3. One current model is that SETDB1 is recruited to specific genomic locations via interaction with the corepressor TRIM28 (KAP1), which is in turn recruited to the genome via interaction with zinc finger transcription factors that contain a Kruppel-associated box (KRAB) domain. However, specific KRAB-ZNFs that recruit TRIM28 (KAP1) and SETDB1 to the genome have not been identified. We now show that ZNF274 (a KRAB-ZNF that contains 5 C2H2 zinc finger domains), can interact with KAP1 both in vivo and in vitro and, using ChIP-seq, we show that ZNF274 binding sites co-localize with SETDB1, KAP1, and H3K9me3 at the 3′ ends of zinc finger genes. Knockdown of ZNF274 with siRNAs reduced the levels of KAP1 and SETDB1 recruitment to the binding sites. These studies provide the first identification of a KRAB domain-containing ZNF that is involved in recruitment of the KAP1 and SETDB1 to specific regions of the human genome.


British Journal of Cancer | 2007

Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer

Yuen Yee Cheng; J Yu; Y P Wong; Ellen P.S. Man; K. F. To; Victor X. Jin; Jisheng Li; Qian Tao; J J Y Sung; Francis K.L. Chan; Wk Leung

The role of secreted frizzled-related protein (SFRP) genes in gastric cancer remains largely unknown. We determined the frequency and functional significance of SFRPs hypermethylation in human gastric cancer. The expression and methylation status of four SFRP members (SFRP1, 2, 4, and 5) in primary gastric cancer samples was screened. The biological effects of SFRP were analysed by flow cytometry, cell viability assay and in vivo tumour growth in nude mice. Among the four SFRPs, only SFRP2 was significantly downregulated in gastric cancer as compared to adjacent non-cancer samples (P<0.01). Promoter hypermethylation of SFRP2 was detected in 73.3% primary gastric cancer tissues, 37.5% of samples showing intestinal metaplasia and 20% adjacent normal gastric tissues. Bisulphite DNA sequencing confirmed the densely methylated SFRP2 promoter region. Demethylation treatment restored the expression of SFRP2 in gastric cancer cell lines. Forced expression of SFRP2 induced cell apoptosis, inhibited proliferation of gastric cancer cells and suppressed tumour growth in vivo. Moreover, methylated SFRP2 was detected in 66.7% of serum samples from cancer patients but not in normal controls. In conclusion, epigenetic inactivation of SFRP2 is a common and early event contributing to gastric carcinogenesis and may be a potential biomarker for gastric cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia

Shih-Shih Chen; Aparna Raval; Amy J. Johnson; Erin Hertlein; Te-Hui Liu; Victor X. Jin; Mara H. Sherman; Shujun Liu; David W. Dawson; Katie Williams; Mark C. Lanasa; Sandya Liyanarachchi; Thomas S. Lin; Guido Marcucci; Yuri Pekarsky; Ramana V. Davuluri; Carlo M. Croce; Denis C. Guttridge; Michael A. Teitell; John C. Byrd; Christoph Plass

Epigenetic alterations, including gain or loss of DNA methylation, are a hallmark of nearly every malignancy. Changes in DNA methylation can impact expression of cancer-related genes including apoptosis regulators and tumor suppressors. Because such epigenetic changes are reversible, they are being aggressively investigated as potential therapeutic targets. Here we use the Eμ-TCL1 transgenic mouse model of chronic lymphocytic leukemia (CLL) to determine the timing and patterns of aberrant DNA methylation, and to investigate the mechanisms that lead to aberrant DNA methylation. We show that CLL cells from Eμ-TCL1 mice at various stages recapitulate epigenetic alterations seen in human CLL. Aberrant methylation of promoter sequences is observed as early as 3 months of age in these animals, well before disease onset. Abnormally methylated promoter regions include binding sites for the transcription factor FOXD3. We show that loss of Foxd3 expression due to an NF-κB p50/p50:HDAC1 repressor complex occurs in TCL1-positive B cells before methylation. Therefore, specific transcriptional repression is an early event leading to epigenetic silencing of target genes in murine and human CLL. These results provide strong rationale for the development of strategies to target NF-κB components in CLL and potentially other B-cell malignancies.


Genome Biology | 2012

Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3

Seth Frietze; Rui Wang; Lijing Yao; Yu Gyoung Tak; Zhenqing Ye; Malaina Gaddis; Heather Witt; Peggy J. Farnham; Victor X. Jin

BackgroundThe TCF7L2 transcription factor is linked to a variety of human diseases, including type 2 diabetes and cancer. One mechanism by which TCF7L2 could influence expression of genes involved in diverse diseases is by binding to distinct regulatory regions in different tissues. To test this hypothesis, we performed ChIP-seq for TCF7L2 in six human cell lines.ResultsWe identified 116,000 non-redundant TCF7L2 binding sites, with only 1,864 sites common to the six cell lines. Using ChIP-seq, we showed that many genomic regions that are marked by both H3K4me1 and H3K27Ac are also bound by TCF7L2, suggesting that TCF7L2 plays a critical role in enhancer activity. Bioinformatic analysis of the cell type-specific TCF7L2 binding sites revealed enrichment for multiple transcription factors, including HNF4alpha and FOXA2 motifs in HepG2 cells and the GATA3 motif in MCF7 cells. ChIP-seq analysis revealed that TCF7L2 co-localizes with HNF4alpha and FOXA2 in HepG2 cells and with GATA3 in MCF7 cells. Interestingly, in MCF7 cells the TCF7L2 motif is enriched in most TCF7L2 sites but is not enriched in the sites bound by both GATA3 and TCF7L2. This analysis suggested that GATA3 might tether TCF7L2 to the genome at these sites. To test this hypothesis, we depleted GATA3 in MCF7 cells and showed that TCF7L2 binding was lost at a subset of sites. RNA-seq analysis suggested that TCF7L2 represses transcription when tethered to the genome via GATA3.ConclusionsOur studies demonstrate a novel relationship between GATA3 and TCF7L2, and reveal important insights into TCF7L2-mediated gene regulation.


Molecular and Cellular Biology | 2011

Functional Analysis of KAP1 Genomic Recruitment

Sushma Iyengar; Alexey V. Ivanov; Victor X. Jin; Frank J. Rauscher; Peggy J. Farnham

ABSTRACT TRIM28 (KAP1) is upregulated in many cancers and has been implicated in both transcriptional activation and repression. Using chromatin immunoprecipitation and sequencing, we show that KAP1 binding sites fall into several categories, specifically, the 3′ coding exons of zinc finger (ZNF) genes and promoter regions of ZNFs and other genes. The currently accepted model is that KAP1 is recruited to the genome via interaction of its N-terminal RBCC domain with KRAB ZNFs (KRAB domain containing ZNFs). To determine whether the interaction of KAP1 with KRAB ZNFs is the mechanism by which KAP1 is recruited to genomic binding sites, we analyzed stable cell lines that express tagged wild-type and mutant KAP1. Surprisingly, deletion of the RBCC domain abolished KAP1 binding to the 3′ exons of ZNF genes but KAP1 binding to promoter regions was unaffected. Using KAP1 knockdown cells, we showed that the genes most responsive to KAP1 were not ZNF genes but instead were either indirect targets or had KAP1 bound 10 to 100 kb from the transcription start site. Therefore, our studies suggest that KAP1 plays a role distinct from transcriptional regulation at the majority of its strongest binding sites.


BMC Bioinformatics | 2006

Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs

Victor X. Jin; Gregory A. C. Singer; Francisco J. Agosto-Perez; Sandya Liyanarachchi; Ramana V. Davuluri

BackgroundThe canonical core promoter elements consist of the TATA box, initiator (Inr), downstream core promoter element (DPE), TFIIB recognition element (BRE) and the newly-discovered motif 10 element (MTE). The motifs for these core promoter elements are highly degenerate, which tends to lead to a high false discovery rate when attempting to detect them in promoter sequences.ResultsIn this study, we have performed the first analysis of these core promoter elements in orthologous mouse and human promoters with experimentally-supported transcription start sites. We have identified these various elements using a combination of positional weight matrices (PWMs) and the degree of conservation of orthologous mouse and human sequences – a procedure that significantly reduces the false positive rate of motif discovery. Our analysis of 9,010 orthologous mouse-human promoter pairs revealed two combinations of three-way synergistic effects, TATA-Inr-MTE and BRE-Inr-MTE. The former has previously been putatively identified in human, but the latter represents a novel synergistic relationship.ConclusionOur results demonstrate that DNA sequence conservation can greatly improve the identification of functional core promoter elements in the human genome. The data also underscores the importance of synergistic occurrence of two or more core promoter elements. Furthermore, the sequence data and results presented here can help build better computational models for predicting the transcription start sites in the promoter regions, which remains one of the most challenging problems.


Journal of Biological Chemistry | 2007

Identification of Genes Directly Regulated by the Oncogene ZNF217 Using Chromatin Immunoprecipitation (ChIP)-Chip Assays

Sheryl R. Krig; Victor X. Jin; Mark Bieda; Henriette O'Geen; Paul Yaswen; Roland D. Green; Peggy J. Farnham

It has been proposed that ZNF217, which is amplified at 20q13 in various tumors, plays a key role during neoplastic transformation. ZNF217 has been purified in complexes that contain repressor proteins such as CtBP2, suggesting that it acts as a transcriptional repressor. However, the function of ZNF217 has not been well characterized due to a lack of known target genes. Using a global chromatin immunoprecipitation (ChIP)-chip approach, we identified thousands of ZNF217 binding sites in three tumor cell lines (MCF7, SW480, and Ntera2). Further analysis of ZNF217 in Ntera2 cells showed that many promoters are bound by ZNF217 and CtBP2 and that a subset of these promoters are activated upon removal of ZNF217. Thus, our in vivo studies corroborate the in vitro biochemical analyses of ZNF217-containing complexes and support the hypothesis that ZNF217 functions as a transcriptional repressor. Gene ontology analysis showed that ZNF217 targets in Ntera2 cells are involved in organ development, suggesting that one function of ZNF217 may be to repress differentiation. Accordingly we show that differentiation of Ntera2 cells with retinoic acid led to down-regulation of ZNF217. Our identification of thousands of ZNF217 target genes will enable further studies of the consequences of aberrant expression of ZNF217 during neoplastic transformation.

Collaboration


Dive into the Victor X. Jin's collaboration.

Top Co-Authors

Avatar

Tim H M Huang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Peggy J. Farnham

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yao Wang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Zhenqing Ye

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Xun Lan

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianhua Ruan

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge