Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria A. McGuire is active.

Publication


Featured researches published by Victoria A. McGuire.


Biochemical Journal | 2008

Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice.

Xu Huang; Stephan Wullschleger; Natalia Shpiro; Victoria A. McGuire; Kei Sakamoto; Yvonne L. Woods; Wendy Mcburnie; Stewart Fleming; Dario R. Alessi

The LKB1 tumour suppressor phosphorylates and activates AMPK (AMP-activated protein kinase) when cellular energy levels are low, thereby suppressing growth through multiple pathways, including inhibiting the mTORC1 (mammalian target of rapamycin complex 1) kinase that is activated in the majority of human cancers. Blood glucose-lowering Type 2 diabetes drugs also induce LKB1 to activate AMPK, indicating that these compounds could be used to suppress growth of tumour cells. In the present study, we investigated the importance of the LKB1-AMPK pathway in regulating tumorigenesis in mice resulting from deficiency of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor, which drives cell growth through overactivation of the Akt and mTOR (mammalian target of rapamycin) kinases. We demonstrate that inhibition of AMPK resulting from a hypomorphic mutation that decreases LKB1 expression does not lead to tumorigenesis on its own, but markedly accelerates tumour development in PTEN(+/-) mice. In contrast, activating the AMPK pathway by administration of metformin, phenformin or A-769662 to PTEN(+/-) mice significantly delayed tumour onset. We demonstrate that LKB1 is required for activators of AMPK to inhibit mTORC1 signalling as well as cell growth in PTEN-deficient cells. Our findings highlight, using an animal model relevant to understanding human cancer, the vital role that the LKB1-AMPK pathway plays in suppressing tumorigenesis resulting from loss of the PTEN tumour suppressor. They also suggest that pharmacological inhibition of LKB1 and/or AMPK would be undesirable, at least for the treatment of cancers in which the mTORC1 pathway is activated. Most importantly, our results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.


Journal of Immunology | 2013

PGE 2 Induces Macrophage IL-10 Production and a Regulatory-like Phenotype via a Protein Kinase A-SIK-CRTC3 Pathway

Kirsty F. MacKenzie; Kristopher Clark; Shaista Naqvi; Victoria A. McGuire; Gesa Nöehren; Yosua Kristariyanto; Mirjam W. M. Van Den Bosch; Manikhandan Mudaliar; Pierre C McCarthy; Michael J. Pattison; Patrick G. A. Pedrioli; Geoff J. Barton; Rachel Toth; Alan R. Prescott; J. Simon C. Arthur

The polarization of macrophages into a regulatory-like phenotype and the production of IL-10 plays an important role in the resolution of inflammation. We show in this study that PGE2, in combination with LPS, is able to promote an anti-inflammatory phenotype in macrophages characterized by high expression of IL-10 and the regulatory markers SPHK1 and LIGHT via a protein kinase A–dependent pathway. Both TLR agonists and PGE2 promote the phosphorylation of the transcription factor CREB on Ser133. However, although CREB regulates IL-10 transcription, the mutation of Ser133 to Ala in the endogenous CREB gene did not prevent the ability of PGE2 to promote IL-10 transcription. Instead, we demonstrate that protein kinase A regulates the phosphorylation of salt-inducible kinase 2 on Ser343, inhibiting its ability to phosphorylate CREB-regulated transcription coactivator 3 in cells. This in turn allows CREB-regulated transcription coactivator 3 to translocate to the nucleus where it serves as a coactivator with the transcription factor CREB to induce IL-10 transcription. In line with this, we find that either genetic or pharmacological inhibition of salt-inducible kinases mimics the effect of PGE2 on IL-10 production.


Molecular and Cellular Biology | 2013

Cross talk between the Akt and p38α pathways in macrophages downstream of Toll-like receptor signaling.

Victoria A. McGuire; Alexander Gray; Claire E. Monk; S. G. Santos; Keunwook Lee; Anna Aubareda; J. Crowe; Natalia Ronkina; Jessica Schwermann; Ian H. Batty; Nicolas R Leslie; Jonathan L. E. Dean; S. J. O'Keefe; Mark Boothby; Matthias Gaestel; J. S. C. Arthur

ABSTRACT The stimulation of Toll-like receptors (TLRs) on macrophages by pathogen-associated molecular patterns (PAMPs) results in the activation of intracellular signaling pathways that are required for initiating a host immune response. Both phosphatidylinositol 3-kinase (PI3K)–Akt and p38 mitogen-activated protein kinase (MAPK) signaling pathways are activated rapidly in response to TLR activation and are required to coordinate effective host responses to pathogen invasion. In this study, we analyzed the role of the p38-dependent kinases MK2/3 in the activation of Akt and show that lipopolysaccharide (LPS)-induced phosphorylation of Akt on Thr308 and Ser473 requires p38α and MK2/3. In cells treated with p38 inhibitors or an MK2/3 inhibitor, phosphorylation of Akt on Ser473 and Thr308 is reduced and Akt activity is inhibited. Furthermore, BMDMs deficient in MK2/3 display greatly reduced phosphorylation of Ser473 and Thr308 following TLR stimulation. However, MK2/3 do not directly phosphorylate Akt in macrophages but act upstream of PDK1 and mTORC2 to regulate Akt phosphorylation. Akt is recruited to phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the membrane, where it is activated by PDK1 and mTORC2. Analysis of lipid levels in MK2/3-deficient bone marrow-derived macrophages (BMDMs) revealed a role for MK2/3 in regulating Akt activity by affecting availability of PIP3 at the membrane. These data describe a novel role for p38α-MK2/3 in regulating TLR-induced Akt activation in macrophages.


PLOS ONE | 2014

The Catalytic Subunit of the System L1 Amino Acid Transporter (Slc7a5) Facilitates Nutrient Signalling in Mouse Skeletal Muscle

Nadège Poncet; Fiona E. Mitchell; Adel F. M. Ibrahim; Victoria A. McGuire; Grant English; J. Simon C. Arthur; Yun-Bo Shi; Peter M. Taylor

The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/−) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass.


Molecular and Cellular Biology | 2013

MSK1 and MSK2 inhibit lipopolysaccharide-induced prostaglandin production via an interleukin-10 feedback loop.

Kirsty F. MacKenzie; Mirjam W. M. Van Den Bosch; Shaista Naqvi; Suzanne E. Elcombe; Victoria A. McGuire; Alastair D. Reith; Perry J. Blackshear; Jonathan L. E. Dean; J. Simon C. Arthur

ABSTRACT Prostaglandin production is catalyzed by cyclooxygenase 2 (cox-2). We demonstrate here that MSK1 and MSK2 (MSK1/2) can exert control on the induction of cox-2 mRNA by Toll-like receptor (TLR) agonists. In the initial phase of cox-2 induction, MSK1/2 knockout macrophages confirmed a role for MSK in the positive regulation of transcription. However, at later time points both lipopolysaccharide (LPS)-induced prostaglandin and cox-2 protein levels were increased in MSK1/2 knockout. Further analysis found that while MSKs promoted cox-2 mRNA transcription, following longer LPS stimulation MSKs also promoted degradation of cox-2 mRNA. This was found to be the result of an interleukin 10 (IL-10) feedback mechanism, with endogenously produced IL-10 promoting cox-2 degradation. The ability of IL-10 to do this was dependent on the mRNA binding protein TTP through a p38/MK2-mediated mechanism. As MSKs regulate IL-10 production in response to LPS, MSK1/2 knockout results in reduced IL-10 secretion and therefore reduced feedback from IL-10 on cox-2 mRNA stability. Following LPS stimulation, this increased mRNA stability correlated to an elevated induction of both of cox-2 protein and prostaglandin secretion in MSK1/2 knockout macrophages relative to that in wild-type cells. This was not restricted to isolated macrophages, as a similar effect of MSK1/2 knockout was seen on plasma prostaglandin E2 (PGE2) levels following intraperitoneal injection of LPS.


The EMBO Journal | 2013

PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development

Ram K C Venigalla; Victoria A. McGuire; Rosemary G. Clarke; Janet C. Patterson-Kane; Ayaz Najafov; Rachel Toth; Pierre C McCarthy; Frederick R. C. Simeons; Laste Stojanovski; J. Simon C. Arthur

Phosphoinositide‐dependent kinase‐1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B‐cell progenitors lacking PDK1 arrested at the transition of pro‐B to pre‐B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro‐B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre‐B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre‐B cells and they have an impaired ability to undergo cell‐cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro‐survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro‐B cells restored their ability to differentiate in vitro into mature B cells.


Scientific Reports | 2016

Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation

Victoria A. McGuire; Tamara Ruiz-Zorrilla Diez; Christoph H. Emmerich; Sam Strickson; Maria Stella Ritorto; Ruhcha V. Sutavani; Anne Weiβ; Kirsty F. Houslay; Axel Knebel; Paul J. Meakin; Iain R. Phair; Michael L.J. Ashford; Matthias Trost; J. Simon C. Arthur

Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity.


Frontiers in Immunology | 2015

Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

Victoria A. McGuire; J. Simon C. Arthur

Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection.


Molecular and Cellular Biology | 2017

Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways

Victoria A. McGuire; Dalya R. Rosner; Olga Ananieva; Ewan A. Ross; Suzanne E. Elcombe; Shaista Naqvi; Mirjam M. W. van den Bosch; Claire E. Monk; Tamara Ruiz-Zorrilla Diez; Andrew R. Clark; J. Simon C. Arthur

ABSTRACT Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA.


Methods of Molecular Biology | 2009

Gene-targeting vectors.

J. Simon; C. Arthur; Victoria A. McGuire

Gene targeting in mice has been used extensively to elucidate gene function in vivo. However, for gene targeting to be successful, the targeting vector must be carefully designed. This chapter addresses the rationale behind designing targeting vectors, detailing the essential components, and highlighting specific considerations for different types of vectors, from gene deletions to point mutations and insertions. Examples of vector designs, cloning strategies, and approaches for successful screening of recombinants are described. The use of Cre/LoxP and Flp/frt systems for conditional targeting is described, together with strategies for generating conditional deletions. Methods for generating conditional point mutations are also described and their potential drawbacks discussed.

Collaboration


Dive into the Victoria A. McGuire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge