Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria A. Parisi is active.

Publication


Featured researches published by Victoria A. Parisi.


Environmental Science & Technology | 2009

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

Kathleen E. Duncan; Lisa M. Gieg; Victoria A. Parisi; Ralph S. Tanner; Susannah G. Tringe; Jim Bristow; Joseph M. Suflita

Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfate-reducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptide- and amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria, and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely reinjected into reservoirs for oil recovery purposes, are biodegraded and can provide biocorrosive microbial communities with an important source of nutrients.


Environmental Science & Technology | 2010

Diversity of Benzyl- and Alkylsuccinate Synthase Genes in Hydrocarbon-Impacted Environments and Enrichment Cultures

Amy V. Callaghan; Irene A. Davidova; Kristen Savage-Ashlock; Victoria A. Parisi; Lisa M. Gieg; Joseph M. Suflita; Boris Wawrik

Hydrocarbon-degrading microorganisms play an important role in the natural attenuation of spilled petroleum in a variety of anoxic environments. The role of benzylsuccinate synthase (BSS) in aromatic hydrocarbon degradation and its use as a biomarker for field investigations are well documented. The recent discovery of alkylsuccinate synthase (ASS) allows the opportunity to test whether its encoding gene, assA, can serve as a comparable biomarker of anaerobic alkane degradation. Degenerate assA- and bssA-targeted PCR primers were designed in order to survey the diversity of genes associated with aromatic and aliphatic hydrocarbon biodegradation in petroleum-impacted environments and enrichment cultures. DNA was extracted from an anaerobic alkane-degrading isolate (Desulfoglaeba alkenexedens ALDC), hydrocarbon-contaminated river and aquifer sediments, a paraffin-degrading enrichment, and a propane-utilizing mixed culture. Partial assA and bssA genes were PCR amplified, cloned, and sequenced, yielding several novel clades of assA genes. These data expand the range of alkane-degrading conditions for which relevant gene sequences are available and indicate that considerable diversity of assA genes can be found in hydrocarbon-impacted environments. The detection of genes associated with anaerobic alkane degradation in conjunction with the in situ detection of alkylsuccinate metabolites was also demonstrated. Comparable molecular signals of assA/bssA were not found when environmental metagenome databases of uncontaminated sites were searched. These data confirm that the assA gene is a useful biomarker for anaerobic alkane metabolism.


FEMS Microbiology Ecology | 2012

Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin

Boris Wawrik; Margarita Mendivelso; Victoria A. Parisi; Joseph M. Suflita; Irene A. Davidova; Christopher R. Marks; Joy D. Van Nostrand; Yuting Liang; Jizhong Zhou; Brad J. Huizinga; Dariusz Strąpoć; Amy V. Callaghan

The bioconversion of coal to methane in the San Juan Basin, New Mexico, was investigated. Production waters were analyzed via enrichment studies, metabolite-profiling, and culture-independent methods. Analysis of 16S rRNA gene sequences indicated the presence of methanogens potentially capable of acetoclastic, hydrogenotrophic, and methylotrophic metabolisms, predominantly belonging to the Methanosarcinales and Methanomicrobiales. Incubations of produced water and coal readily produced methane, but there was no correlation between the thermal maturity and methanogenesis. Coal methanogenesis was greater when samples with a greater richness of Firmicutes were utilized. A greater archaeal diversity was observed in the presence of several aromatic and short-chain fatty acid metabolites. Incubations amended with lactate, hydrogen, formate, and short-chain alcohols produced methane above un-amended controls. Methanogenesis from acetate was not observed. Metabolite profiling showed the widespread occurrence of putative aromatic ring intermediates including benzoate, toluic acids, phthalic acids, and cresols. The detection of saturated and unsaturated alkylsuccinic acids indicated n-alkane and cyclic alkane/alkene metabolism. Microarray analysis complemented observations based on hybridization to functional genes related to the anaerobic metabolism of aromatic and aliphatic substrates. These data suggest that coal methanogenesis is unlikely to be limited by methanogen biomass, but rather the activation and degradation of coal constituents.


FEMS Microbiology Ecology | 2010

Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns

Kristen N. Savage; Lee R. Krumholz; Lisa M. Gieg; Victoria A. Parisi; Joseph M. Suflita; Jon Allen; R. Paul Philp; Mostafa S. Elshahed

We evaluated the ability of the native microbiota in a low-temperature, sulfidic natural hydrocarbon seep (Zodletone) to metabolize short-chain hydrocarbons. n-Propane and n-pentane were metabolized under sulfate-reducing conditions in initial enrichments and in sediment-free subcultures. Carbon isotope analysis of residual propane in active enrichments showed that propane became enriched in (13)C by 6.7 (+/-2.0) per thousand, indicating a biological mechanism for propane loss. The detection of n-propylsuccinic and isopropylsuccinic acids in active propane-degrading enrichments provided evidence for anaerobic biodegradation via a fumarate addition pathway. A eubacterial 16S rRNA gene survey of sediment-free enrichments showed that the majority of the sequenced clones were phylogenetically affiliated within the Deltaproteobacteria. Such sequences were most closely affiliated with clones retrieved from hydrocarbon-impacted marine ecosystems, volatile fatty acid metabolizers, hydrogen users, and with a novel Deltaproteobacterial lineage. Other cloned sequences were affiliated with the Firmicutes and Chloroflexi phyla. The sequenced clones were only distantly (<95%) related to other reported low-molecular-weight alkane-degrading sulfate-reducing populations. This work documents the potential for anaerobic short-chain n-alkane metabolism for the first time in a terrestrial environment, provides evidence for a fumarate addition mechanism for n-propane activation under these conditions, and reveals microbial community members present in such enrichments.


Microbial Biotechnology | 2009

Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site.

Victoria A. Parisi; Gaylen R. Brubaker; Matthew J. Zenker; Roger C. Prince; Lisa M. Gieg; Marcio Luis Busi da Silva; Pedro J. J. Alvarez; Joseph M. Suflita

Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underlying a former refinery. Benzene, ethylbenzene, 2‐methylnaphthalene, 1,2,4‐ and 1,3,5‐trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization of alkylbenzenes, including the trimethylbenzene COC, PAHs and several n‐alkanes in the contaminated portions of the aquifer. Anaerobic biodegradation experiments designed to mimic in situ conditions showed no loss of exogenously amended COC; however, a substantive rate of endogenous electron acceptor reduction was measured (55 ± 8 µM SO4 day−1). An assessment of hydrocarbon loss in laboratory experiments relative to a conserved internal marker revealed that non‐COC hydrocarbons were being metabolized. Purge and trap analysis of laboratory assays showed a substantial loss of toluene, m‐ and o‐xylene, as well as several alkanes (C6–C12). Multiple lines of evidence suggest that benzene is persistent under the prevailing site anaerobic conditions. We could find no in situ benzene intermediates (phenol or benzoate), the parent molecule proved recalcitrant in laboratory assays and low copy numbers of Desulfobacterium were found, a genus previously implicated in anaerobic benzene biodegradation. This study also showed that there was a reasonable correlation between field and laboratory findings, although with notable exception. Thus, while the intrinsic anaerobic bioremediation was clearly evident at the site, non‐COC hydrocarbons were preferentially metabolized, even though there was ample literature precedence for the biodegradation of the target molecules.


Environmental Science & Technology | 2012

GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

Zhenmei Lu; Zhili He; Victoria A. Parisi; Sanghoon Kang; Ye Deng; Joy D. Van Nostrand; Jason R. Masoner; Isabelle M. Cozzarelli; Joseph M. Suflita; Jizhong Zhou

The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.


FEMS Microbiology Ecology | 2017

Elucidation of the methanogenic potential from coalbed microbial communities amended with volatile fatty acids

Christopher N. Lyles; Victoria A. Parisi; William Howard Beasley; Joy D. Van Nostrand; Jizhong Zhou; Joseph M. Suflita

The potential for modern coalfield methanogenesis was assessed using formation water from the Illinois Basin, Powder River Basin and Cook Inlet gas field as inocula for nutrient-replete incubations amended with C1-C5 fatty acids as presumed intermediates formed during anaerobic coal biodegradation. Instead of the expected rapid mineralization of these substrates, methanogenesis was inordinately slow (∼1 μmol day-1), following long lag periods (>100 days), and methane yields typically did not reach stoichiometrically expected levels. However, a gene microarray confirmed the potential for a wide variety of microbiological functions, including methanogenesis, at all sites. The Cook Inlet incubations produced methane at a relatively rapid rate when amended with butyrate (r = 0.98; p = 0.001) or valerate (r = 0.84; p = 0.04), a result that significantly correlated with the number of positive mcr gene sequence probes from the functional gene microarray and was consistent with the in situ detection of C4-C5 alkanoic acids. This finding highlighted the role of syntrophy for the biodegradation of the softer lignite and subbituminous coal in this formation, but methanogenesis from the harder subbituminous and bituminous coals in the other fields was less apparent. We conclude that coal methanogenesis is probably not limited by the inherent lack of metabolic potential, the presence of alternate electron acceptors or the lack of available nutrients, but more likely restricted by the inherent recalcitrance of the coal itself.


Lawrence Berkeley National Laboratory | 2010

GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill

Zhenmei Lu; Zhili He; Victoria A. Parisi; Sanghoon Kang; Ye Deng; Joy D. Van Nostrand; Jason R. Masoner; Isabelle M. Cozzarelli; Joseph M. Suflita; Jizhong Zhou

The Norman Landfill is a closed municipal solid waste landfill located on an alluvium associated with the Canadian River in Norman, Oklahoma. It has operated as a research site since 1994 because it is typical of many closed landfill sites across the U.S. Leachate from the unlined landfill forms a groundwater plume that extends downgradient approximately 250 m from the landfill toward the Canadian River. To investigate the impact of the landfill leachate on the diversity and functional structure of microbial communities, groundwater samples were taken from eight monitoring wells at a depth of 5m, and analyzed using a comprehensive functional gene array covering about 50,000 genes involved in key microbial processes, such as biogeochemical cycling of C, N, P, and S, and bioremediation of organic contaminants and metals. Wells are located within a transect along a presumed flow path with different distances to the center of the leachate plume. Our analyses showed that microbial communities were obviously impacted by the leachate-component from the landfill. The number of genes detected and microbial diversity indices in the center (LF2B) and its closest (MLS35) wells were significantly less than those detected in other more downgradient wells, while no significant changes were observed in the relative abundance (i.e., percentage of each gene category) for most gene categories. However, the microbial community composition or structure of the landfill groundwater did not clearly show a significant correlation with the distance from well LF2B. Burkholderia sp. and Pseudomonas sp. were found to be the dominant microbial populations detected in all wells, while Bradyrhizobium sp. and Ralstonia sp. were dominant populations for seven wells except LF2B. In addition, Mantel test and canonical correspondence analysis (CCA) indicate that pH, sulfate, ammonia nitrogen and dissolved organic carbon (DOC) have significant effects on the microbial community structure. The results suggest that the leachate from unlined landfills significantly impact the structures of groundwater microbial communities, and that more distal wells recover by natural attenuation.


Environmental Microbiology | 2011

Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure.

Bradley S. Stevenson; H.S. Drilling; Paul A. Lawson; Kathleen E. Duncan; Victoria A. Parisi; Joseph M. Suflita


Archive | 2009

Metabolic indicators of anaerobic hydrocarbon decay in diverse petroleum-laden environments

Lisa M. Gieg; Victoria A. Parisi; Joseph M. Suflita

Collaboration


Dive into the Victoria A. Parisi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle M. Cozzarelli

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jason R. Masoner

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhili He

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

Ye Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge