Victoria Cabrera-Sharp
Royal Veterinary College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria Cabrera-Sharp.
Endocrinology | 2014
Victoria Cabrera-Sharp; Jordan Read; Stephanie Richardson; Alycia Kowalski; Douglas F. Antczak; Judith E. Cartwright; Abir Mukherjee; Amanda M. de Mestre
TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27–34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta.
Reproduction | 2016
Denis Aleksic; Lisa Blaschke; Sophie Mißbach; Jana Hänske; Wiebke Weiß; Johannes Handler; Wolfgang Zimmermann; Victoria Cabrera-Sharp; Jordan Read; Amanda M. de Mestre; Ronan O’Riordan; Tom Moore; Robert Kammerer
Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions.
Placenta | 2016
B.V. Rose; Victoria Cabrera-Sharp; M. Firth; F.E. Barrelet; S. Bate; I.J. Cameron; J.R. Crabtree; J. Crowhurst; A.J. McGladdery; H. Neal; J. Pynn; O.D. Pynn; C. Smith; Z. Wise; K.L.P. Verheyen; D C Wathes; A.M. de Mestre
Early pregnancy loss occurs in 6-10% of equine pregnancies making it the main cause of reproductive wastage. Despite this, reasons for the losses are known in only 16% of cases. Lack of viable conceptus material has inhibited investigations of many potential genetic and pathological causes. We present a method for isolating and culturing placental cells from failed early equine pregnancies. Trophoblast cells from 18/30 (60%) failed equine pregnancies of gestational ages 14-65 days were successfully cultured in three different media, with the greatest growth achieved for cells cultured in AmnioChrome™ Plus. Genomic DNA of a suitable quality for molecular assays was also isolated from 29/30 of these cases. This method will enable future investigations determining pathologies causing EPL.
Cell and Tissue Research | 2013
Victoria Cabrera-Sharp; Samantha Mirczuk; Elaine Shervill; Anthony E. Michael; Robert C. Fowkes
In target tissues, cortisol is metabolised by two 11β-hydroxysteroid dehydrogenase (11βHSD) isoenzymes, namely 11βHSD1 and 11βHSD2, both of which are co-expressed in the boar testis and reproductive tract. The present study has assessed whether cortisol-cortisone metabolism in boar testis and caput epididymidis can be regulated via the gonadotrophin-cAMP signalling pathway. 11βHSD activities were measured by using a radiometric conversion assay in static tissue culture. In both testis and caput epididymidis, the net reduction of cortisone but not the net oxidation of cortisol, was significantly decreased by luteinising hormone (by 53 ± 20% and 45 ± 9%, respectively, P < 0.05), forskolin (by 60 ± 7% and 57 ± 9%, respectively, P < 0.01) and 8-bromo-cAMP (by 54 ± 4% and 64 ± 1%, respectively, P < 0.01). This suppression of 11-ketosteroid reductase activity in the boar testis by forskolin could be attenuated by the protein kinase A (PKA) inhibitor, H89. Hence, within the boar testis and the caput epididymidis, the local actions of glucocorticoids are modulated by gonadotrophin-cAMP-PKA signalling via their selective effects on the reductase activity of 11βHSD.
Frontiers in Endocrinology | 2018
Amanda M. de Mestre; Jordan Read; Victoria Cabrera-Sharp; Phoebe Kitscha; Judith E. Cartwright; Peter King; Rob Fowkes
Equine chorionic gonadotrophin (eCG) is a placental glycoprotein critical for early equine pregnancy and used therapeutically in a number of species to support reproductive activity. The factors in trophoblast that transcriptionally regulate eCGβ-subunit (LHB), the gene which confers the hormones specificity for the receptor, are not known. The aim of this study was to determine if glial cells missing 1 regulates LHB promoter activity. Here, studies of the LHB proximal promoter identified four binding sites for glial cells missing 1 (GCM1) and western blot analysis confirmed GCM1 was expressed in equine chorionic girdle (ChG) and surrounding tissues. Luciferase assays demonstrated endogenous activity of the LHB promoter in BeWo choriocarcinoma cells with greatest activity by a proximal 335 bp promoter fragment. Transactivation studies in COS7 cells using an equine GCM1 expression vector showed GCM1 could transactivate the proximal 335 bp LHB promoter. Chromatin immunoprecipitation using primary ChG trophoblast cells showed GCM1 to preferentially bind to the most proximal GCM1-binding site over site 2. Mutation of site 1 but not site 2 resulted in a loss of endogenous promoter activity in BeWo cells and failure of GCM1 to transactivate the promoter in COS-7 cells. Together, these data show that GCM1 binds to site 1 in the LHB promoter but also requires the upstream segment of the LHB promoter between −119 bp and −335 bp of the translation start codon for activity. GCM1 binding partners, ETV1, ETV7, HOXA13, and PITX1, were found to be differentially expressed in the ChG between days 27 and 34 and are excellent candidates for this role. In conclusion, GCM1 was demonstrated to drive the LHB promoter, through direct binding to a predicted GCM1-binding site, with requirement for another factor(s) to bind the proximal promoter to exert this function. Based on these findings, we hypothesize that ETV7 and HOXA13 act in concert with GCM1 to initiate LHB transcription between days 30 and 31, with ETV1 partnering with GCM1 to maintain transcription.
Reproduction | 2018
Jordan Read; Victoria Cabrera-Sharp; Victoria Offord; Samantha Mirczuk; Steve P Allen; Robert C. Fowkes; Amanda M. de Mestre
Society for Endocrinology BES 2015 | 2015
Jordan Read; Victoria Cabrera-Sharp; Samantha Mirczuk; Robert Fowkes; Mestre Amanda de
Archive | 2015
B.V. Rose; Victoria Cabrera-Sharp; Ian Cameron; James Crabtree; James Crowhurst; Marvin Firth; Sharmila Ghosh; Andrew McGladdery; Huw Neal; Jan Pynn; Oliver Pynn; Terje Raudsepp; Charlie Smith; K.L.P. Verheyen; D Claire Wathes; Zara Wise; Mestre Amanda de
Society for Endocrinology BES 2014 | 2014
Victoria Cabrera-Sharp; Jordan Read; Abir Mukherjee; Mestre Amanda de
Society for Endocrinology BES 2014 | 2014
Victoria Cabrera-Sharp; Jordan Read; Phoebe Kitscha; Amelie Geddis; Judith E. Cartwright; Mestre Amanda de