Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria J. Bertics is active.

Publication


Featured researches published by Victoria J. Bertics.


Science | 2014

Temporal Constraints on Hydrate-Controlled Methane Seepage off Svalbard

Christian Berndt; Tomas Feseker; Tina Treude; Sebastian Krastel; Volker Liebetrau; Helge Niemann; Victoria J. Bertics; Ines Dumke; Karolin Dünnbier; Benedicte Ferre; Carolyn Graves; Felix Gross; Karen Hissmann; Veit Hühnerbach; Stefan Krause; Kathrin Lieser; Jürgen Schauer; Lea Steinle

What Does It All Mean? Strong emissions of methane have recently been observed from shallow sediments in Arctic seas. Berndt et al. (p. 284, published online 2 January) present a record of methane seepage from marine sediments off the coast of Svalbard showing that such emissions have been present for at least 3000 years, the result of normal seasonal fluctuations of bottom waters. Thus, contemporary observations of strong methane venting do not necessarily mean that the clathrates that are the source of the methane are decomposing at a faster rate than in the past. Seasonal gas hydrate destabilization has been releasing methane from marine sediments near Svalbard for at least 3000 years. Methane hydrate is an icelike substance that is stable at high pressure and low temperature in continental margin sediments. Since the discovery of a large number of gas flares at the landward termination of the gas hydrate stability zone off Svalbard, there has been concern that warming bottom waters have started to dissociate large amounts of gas hydrate and that the resulting methane release may possibly accelerate global warming. Here, we corroborate that hydrates play a role in the observed seepage of gas, but we present evidence that seepage off Svalbard has been ongoing for at least 3000 years and that seasonal fluctuations of 1° to 2°C in the bottom-water temperature cause periodic gas hydrate formation and dissociation, which focus seepage at the observed sites.


The ISME Journal | 2009

Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches

Victoria J. Bertics; Wiebke Ziebis

We used a combination of field and laboratory approaches to address how the bioturbation activity of two crustaceans, the ghost shrimp Neotrypaea californiensis and the fiddler crab Uca crenulata, affects the microbial diversity in the seabed of a coastal lagoon (Catalina Harbor, Santa Catalina Island, CA, USA). Detailed geochemical analyses, including oxygen microsensor measurements, were performed to characterize environmental parameters. We used a whole-assemblage fingerprinting approach (ARISA: amplified ribosomal intergenic spacer analysis) to compare bacterial diversity along geochemical gradients and in relation to subsurface microniches. The two crustaceans have different burrowing behaviors. The ghost shrimp maintains complex, deep-reaching burrows and permanently lives subterranean, supplying its burrow with oxygen-rich water. In contrast, the fiddler crab constructs simpler, J-shaped burrows, which it does not inhabit permanently and does not actively ventilate. Our goal was to address how varying environmental parameters affect benthic microbial communities. An important question in benthic microbial ecology has been whether burrows support similar or unique communities compared with the sediment surface. Our results showed that sediment surface microbial communities are distinct from subsurface assemblages and that different burrow types support diverse bacterial taxa. Statistical comparisons by canonical correspondence analysis indicated that the availability of oxidants (oxygen, nitrate, ferric iron) play a key role in determining the presence and abundance of different taxa. When geochemical parameters were alike, microbial communities associated with burrows showed significant similarity to sediment surface communities. Our study provides implications on the community structure of microbial communities in marine sediments and the factors controlling their distribution.


Environmental Microbiology | 2010

Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments

Victoria J. Bertics; Wiebke Ziebis

The effects of bioturbation in marine sediments are mainly associated with an increase in oxic and oxidized zones through an influx of oxygen-rich water deeper into the sediment and the rapid transport of particles between oxic and anoxic conditions. However, macrofaunal activity also can increase the occurrence of reduced microniches and anaerobic processes, such as sulfate reduction. Our goal was to determine the two-dimensional distribution of microniches associated with burrows of a ghost shrimp (Neotrypaea californiensis) and to determine microbial activities. In laboratory experiments, detailed measurements of sulfate reduction rates (SRR) were measured by injecting, in a 1 cm grid, radiolabelled sulfate directly into a narrow aquarium (40 cm × 30 cm × 3 cm) containing the complex burrow of an actively burrowing shrimp. Light-coloured oxidized burrow walls, along with black reduced microniches, were clearly visible through the aquarium walls. Direct injection of radiotracers allowed for whole-aquarium incubation to obtain two-dimensional documentation of sulfate reduction. Results indicated SRR were up to three orders of magnitude higher (140-790 nmol SO(4) (2-) cm(-3) day(-1) ) in reduced microniches associated with burrows when compared with the surrounding sediment. Additionally, some of the subsurface sulfate-reducing microniches associated with the burrow system appeared to be zones of dinitrogen fixation. Bioturbation may also lead to decreased sulfate reduction in other microniches and the sum of the activity in all microniches might not result in a total increase of sulfate reduction compared with non-bioturbated control sediments.


Frontiers in Microbiology | 2012

Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

J. M. Beman; Victoria J. Bertics; Thomas Braunschweiler; Jesse M. Wilson

Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation–reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another – yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O2, NH4+, and NO3−) profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and within Catalina Harbor (CH), oxygen penetration (0.24–0.5 cm depth) and the abundance of amoA genes (up to 9.30 × 107 genes g–1) varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer) demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea and bacteria.


Applied and Environmental Microbiology | 2012

Denitrification and nitrogen fixation dynamics in the area surrounding an individual ghost shrimp (Neotrypaea californiensis) burrow system.

Victoria J. Bertics; Jill A. Sohm; Cara Magnabosco; Wiebke Ziebis

ABSTRACT Bioturbated sediments are thought of as areas of increased denitrification or fixed-nitrogen (N) loss; however, recent studies have suggested that not all N may be lost from these environments, with some N returning to the system via microbial dinitrogen (N2) fixation. We investigated denitrification and N2 fixation in an intertidal lagoon (Catalina Harbor, CA), an environment characterized by bioturbation by thalassinidean shrimp (Neotrypaea californiensis). Field studies were combined with detailed measurements of denitrification and N2 fixation surrounding a single ghost shrimp burrow system in a narrow aquarium (15 cm by 20 cm by 5 cm). Simultaneous measurements of both activities were performed on samples taken within a 1.5-cm grid for a two-dimensional illustration of their intensity and distribution. These findings were then compared with rate measurements performed on bulk environmental sediment samples collected from the lagoon. Results for the aquarium indicated that both denitrification and N2 fixation have a patchy distribution surrounding the burrow, with no clear correlation to each other, sediment depth, or distance from the burrow. Field denitrification rates were, on average, lower in a bioturbated region than in a seemingly nonbioturbated region; however, replicates showed very high variability. A comparison of denitrification field results with previously reported N2 fixation rates from the same lagoon showed that in the nonbioturbated region, depth-integrated (10 cm) denitrification rates were higher than integrated N2 fixation rates (∼9 to 50 times). In contrast, in the bioturbated sediments, depending on the year and bioturbation intensity, some (∼6.2%) to all of the N lost via denitrification might be accounted for via N2 fixation.


Marine Ecology Progress Series | 2010

Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction

Victoria J. Bertics; Jill A. Sohm; Tina Treude; Cheryl-Emiliane T Chow; Douglas G. Capone; Jed A. Fuhrman; Wiebke Ziebis


Biogeosciences | 2012

Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

Victoria J. Bertics; Carolin Löscher; I. Salonen; Andrew W. Dale; Jessica Gier; Ruth A. Schmitz; Tina Treude


Biogeosciences | 2012

Modeling benthic–pelagic nutrient exchange processes and porewater distributions in a seasonally hypoxic sediment: evidence for massive phosphate release by Beggiatoa ?

Andrew W. Dale; Victoria J. Bertics; Tina Treude; Stefan Sommer; Klaus Wallmann


Deep-sea Research Part Ii-topical Studies in Oceanography | 2013

Ecological release and niche partitioning under stress: Lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps

Lisa A. Levin; Wiebke Ziebis; Guillermo F. Mendoza; Victoria J. Bertics; Tracy Washington; Jennifer P. Gonzalez; Andrew R. Thurber; Brigitte Ebbe; Raymond W. Lee


Estuarine Coastal and Shelf Science | 2011

Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables

Andrew W. Dale; Stefan Sommer; Lisa Bohlen; Tina Treude; Victoria J. Bertics; Hermann W. Bange; Olaf Pfannkuche; Tanja Schorp; My Eva-Kari Mattsdotter; Klaus Wallmann

Collaboration


Dive into the Victoria J. Bertics's collaboration.

Top Co-Authors

Avatar

Tina Treude

University of California

View shared research outputs
Top Co-Authors

Avatar

Wiebke Ziebis

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge