Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria James is active.

Publication


Featured researches published by Victoria James.


Circulation Research | 2006

Serotonin Increases Susceptibility to Pulmonary Hypertension in BMPR2-Deficient Mice

Lu Long; Margaret R. MacLean; Trina K. Jeffery; Ian Morecroft; Xudong Yang; Nung Rudarakanchana; Mark Southwood; Victoria James; Richard C. Trembath; Nicholas W. Morrell

Heterozygous germline mutations in the gene encoding the bone morphogenetic protein type II (BMPR-II) receptor underlie the majority (>70%) of cases of familial pulmonary arterial hypertension (FPAH), and dysfunction of BMP signaling has been implicated in other forms of PAH. The reduced disease gene penetrance in FPAH indicates that other genetic and/or environmental factors may also be required for the clinical manifestation of disease. Of these, the serotonin pathway has been implicated as a major factor in PAH pathogenesis. We investigated the pulmonary circulation of mice deficient in BMPR-II (BMPR2+/− mice) and show that pulmonary hemodynamics and vascular morphometry of BMPR2+/− mice were similar to wild-type littermate controls under normoxic or chronic hypoxic (2- to 3-week) conditions. However, chronic infusion of serotonin caused increased pulmonary artery systolic pressure, right ventricular hypertrophy, and pulmonary artery remodeling in BMPR2+/− mice compared with wild-type littermates, an effect that was exaggerated under hypoxic conditions. In addition, pulmonary, but not systemic, resistance arteries from BMPR2+/− mice exhibited increased contractile responses to serotonin mediated by both 5-HT2 and 5-HT1 receptors. Furthermore, pulmonary artery smooth muscle cells from BMPR2+/− mice exhibited a heightened DNA synthesis and activation of extracellular signal-regulated kinase 1/2 in response to serotonin compared with wild-type cells. In vitro and in vivo experiments suggested that serotonin inhibits BMP signaling via Smad proteins and the expression of BMP responsive genes. These findings provide the first evidence for an interaction between BMPR-II-mediated signaling and the serotonin pathway, perturbation of which may be critical to the pathogenesis of PAH.


Circulation | 2005

Investigation of Second Genetic Hits at the BMPR2 Locus as a Modulator of Disease Progression in Familial Pulmonary Arterial Hypertension

Rajiv D. Machado; Victoria James; Mark Southwood; Rachel Harrison; Carl Atkinson; Susan Stewart; Nicholas W. Morrell; Richard C. Trembath; Micheala A. Aldred

Background—Primary pulmonary arterial hypertension (PAH) is a potentially devastating condition resulting from occlusion of the pulmonary arterioles by the formation of vascular lesions. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type II (BMPR2) have been identified in both familial (FPAH) and idiopathic PAH. Mutant alleles are typically of low penetrance, indicating that other factors are required for the onset of PAH. Previous reports have suggested that the characteristic plexiform lesions in affected lungs are akin to neoplasia, showing monoclonal expansion and microsatellite instability. We hypothesized that in patients with germline mutations, BMPR2 might behave as a classic tumor suppressor gene, with somatic loss of the wild-type allele contributing to disease progression. Methods and Results—To test this hypothesis, plexiform and concentric vascular lesions were serially microdissected from lung explant tissue derived from 7 FPAH cases. DNA was analyzed for loss of heterozygosity at BMPR2 and for microsatellite instability (MSI) at 5 loci. MSI was detected in 1 of 37 lesions at a single locus, BAT-26, whereas heterozygosity at BMPR2 was retained at all informative loci. We also describe a FPAH patient carrying biallelic constitutional missense mutations of BMPR2 who manifested disease at a stage and manner similar to heterozygous patients. Conclusions—Taken together, these data demonstrate that MSI is uncommon in FPAH and suggest that somatic loss of the remaining wild-type BMPR2 allele in heterozygous mutation carriers likely does not play a significant role in modulating the onset or progression of FPAH.


Journal of Gastrointestinal Surgery | 2011

Knockdown of microRNA-21 Inhibits Proliferation and Increases Cell Death by Targeting Programmed Cell Death 4 (PDCD4) in Pancreatic Ductal Adenocarcinoma

Imran Bhatti; Andrew H S Lee; Victoria James; Richard I. Hall; Jonathan N. Lund; Cristina Tufarelli; Dileep N. Lobo; Michael Larvin

ObjectiveThis study aims to examine the expression of a panel of five microRNAs (miRNA) in pancreatic ductal adenocarcinoma (PDAC) and the functional effect of miR-21 inhibition in PDAC cell lines.BackgroundmiRNA are short, non-coding RNA molecules, which play important roles in several cellular processes by silencing expression of their target genes through translational repression or mRNA degradation. They are often aberrantly expressed in cancer, and this dysregulation can promote carcinogenesis by altering the expression of tumour suppressor or oncogenes.MethodsmiRNA expression levels were measured in 24 PDAC tumour/matched adjacent normal tissue samples and three PDAC cell lines using reverse transcription polymerase chain reaction. Levels of cell proliferation and death and expression of programmed cell death 4 (PDCD4; tumour suppressor) were studied in PDAC cells (MIA-Pa-Ca-2) in the absence or presence of a miR-21 inhibitor.ResultsPDAC primary tissues and cell lines displayed a consistent upregulation of miR-21 (P < 0.0001) and downregulation of both miR-148a (P < 0.0001) and miR-375 (P < 0.0001) relative to adjacent normal tissue. Furthermore, miR-21 levels in the primary tumours correlated with disease stage (P < 0.0001). Inhibition of miR-21 in MIA-Pa-Ca-2 PDAC cells led to reduced cell proliferation (P < 0.01) and increased cell death (P < 0.01), with simultaneous increase in levels of the tumour suppressor, PDCD4 (P < 0.01).ConclusionmiRNA expression profiles may be used as biomarkers for detecting pancreatic cancer. Moreover, miR-21 could be a predictor of disease progression and a possible therapeutic target in part by upregulating PDCD4 in pancreatic cancer.


PLOS Genetics | 2012

SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians

Christina Gonzalez-Estevez; Daniel A. Felix; Matthew D. Smith; Jordi Paps; Simon J. Morley; Victoria James; Tyson V. Sharp; A. Aziz Aboobaker

Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling.


Proceedings of the National Academy of Sciences of the United States of America | 2010

LIM-domain proteins, LIMD1, Ajuba, and WTIP are required for microRNA-mediated gene silencing

Victoria James; Yining Zhang; Daniel E. Foxler; Cornelia H. de Moor; Yi Wen Kong; Thomas M. Webb; Tim Self; Yungfeng Feng; Dimitrios Lagos; Chia-Ying Chu; Tariq M. Rana; Simon J. Morley; Gregory D. Longmore; Martin Bushell; Tyson V. Sharp

In recent years there have been major advances with respect to the identification of the protein components and mechanisms of microRNA (miRNA) mediated silencing. However, the complete and precise repertoire of components and mechanism(s) of action remain to be fully elucidated. Herein we reveal the identification of a family of three LIM domain-containing proteins, LIMD1, Ajuba and WTIP (Ajuba LIM proteins) as novel mammalian processing body (P-body) components, which highlight a novel mechanism of miRNA-mediated gene silencing. Furthermore, we reveal that LIMD1, Ajuba, and WTIP bind to Ago1/2, RCK, Dcp2, and eIF4E in vivo, that they are required for miRNA-mediated, but not siRNA-mediated gene silencing and that all three proteins bind to the mRNA 5′ m7GTP cap–protein complex. Mechanistically, we propose the Ajuba LIM proteins interact with the m7GTP cap structure via a specific interaction with eIF4E that prevents 4EBP1 and eIF4G interaction. In addition, these LIM-domain proteins facilitate miRNA-mediated gene silencing by acting as an essential molecular link between the translationally inhibited eIF4E-m7GTP-5′cap and Ago1/2 within the miRISC complex attached to the 3′-UTR of mRNA, creating an inhibitory closed-loop complex.


Human Molecular Genetics | 2008

Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension

M. Talat Nasim; Amar Ghouri; Bhakti Patel; Victoria James; Nung Rudarakanchana; Nicholas W. Morrell; Richard C. Trembath

Heterozygous germline defects in a gene encoding a type II receptor for bone morphogenetic proteins (BMPR-II) underlie the majority of inherited cases of the vascular disorder known as pulmonary arterial hypertension (PAH). However, the precise molecular consequences of PAH causing mutations on the function of the receptor complex remain unclear. We employed novel enzymatic and fluorescence activity based techniques to assess the impact of PAH mutations on pre-mRNA splicing, nonsense-mediated decay (NMD) and receptor complex interactions. We demonstrate that nonsense and frameshift mutations trigger NMD, providing further evidence that haplo-insufficiency is a major molecular consequence of disease-related BMPR2 mutations. We identified heterogeneous functional defects in BMPR-II activity, including impaired type I receptor phosphorylation, receptor interactions and altered receptor complex stoichiometry leading to perturbation of downstream signalling pathways. Importantly, these studies demonstrate that the intracellular domain of BMPR-II is both necessary and sufficient for receptor complex interaction. Finally and to address the potential for resolution of stoichiometric balance, we investigated an agent that promotes translational readthrough of a BMPR2 nonsense reporter construct without interfering with the NMD pathway. We propose that stoichiometric imbalance, due to either haplo-insufficiency or loss of optimal receptor-receptor interactions impairs BMPR-II mediated signalling in PAH. Taken together, these studies have identified an important target for early therapeutic intervention in familial PAH.


The Breast | 2015

Circulating microRNAs for the prediction of metastasis in breast cancer patients diagnosed with early stage disease.

Joseph Inns; Victoria James

Breast cancer is the second most common malignancy diagnosed in women worldwide. The greatest cause of breast cancer mortality is development of metastasis. For many women metastasis is an early event in breast cancer which goes undetected until its presentation, thus there is an urgent need for the development of biomarkers to predict those patients at greatest risk. The expression of a group of small non-coding RNAs, termed microRNAs, has been shown to be altered in tumours. Furthermore, microRNAs identified as being highly expressed in breast cancer tumours can also be detected in the circulation. Circulating microRNAs are an emerging field of biomarker research which have the benefit of being able to be obtained non-invasively and analysed rapidly and relatively cheaply. Here the potential use of circulating miRNAs to detect metastasis in discussed and the current barriers to their progression to the clinic.


Frontiers in Pharmacology | 2018

Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment

Daria S. Chulpanova; Kristina V. Kitaeva; Leysan Tazetdinova; Victoria James; Albert A. Rizvanov; Valeriya V. Solovyeva

Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs), which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.


FEBS Letters | 2011

PU.1 is a major transcriptional activator of the tumour suppressor gene LIMD1

Daniel E. Foxler; Victoria James; Samuel J. Shelton; Thomas Q. de Aguiar Vallim; Peter E. Shaw; Tyson V. Sharp

LIMD1 is a tumour suppressor gene (TSG) down regulated in ∼80% of lung cancers with loss also demonstrated in breast and head and neck squamous cell carcinomas. LIMD1 is also a candidate TSG in childhood acute lymphoblastic leukaemia. Mechanistically, LIMD1 interacts with pRB, repressing E2F‐driven transcription as well as being a critical component of microRNA‐mediated gene silencing. In this study we show a CpG island within the LIMD1 promoter contains a conserved binding motif for the transcription factor PU.1. Mutation of the PU.1 consensus reduced promoter driven transcription by 90%. ChIP and EMSA analysis demonstrated that PU.1 specifically binds to the LIMD1 promoter. siRNA depletion of PU.1 significantly reduced endogenous LIMD1 expression, demonstrating that PU.1 is a major transcriptional activator of LIMD1.


Frontiers in Immunology | 2018

Therapeutic prospects of extracellular vesicles in cancer treatment

Daria S. Chulpanova; Kristina V. Kitaeva; Victoria James; Albert A. Rizvanov; Valeriya V. Solovyeva

Extracellular vesicles (EVs) are released by all cells within the tumor microenvironment, such as endothelial cells, tumor-associated fibroblasts, pericytes, and immune system cells. The EVs carry the cargo of parental cells formed of proteins and nucleic acids, which can convey cell-to-cell communication influencing the maintenance and spread of the malignant neoplasm, for example, promoting angiogenesis, tumor cell invasion, and immune escape. However, EVs can also suppress tumor progression, either by the direct influence of the protein and nucleic acid cargo of the EVs or via antigen presentation to immune cells as tumor-derived EVs carry on their surface some of the same antigens as the donor cells. Moreover, dendritic cell-derived EVs carry major histocompatibility complex class I and class II/peptide complexes and are able to prime other immune system cell types and activate an antitumor immune response. Given the relative longevity of vesicles within the circulation and their ability to cross blood–brain barriers, modification of these unique organelles offers the potential to create new biological-tools for cancer therapy. This review examines how modification of the EV cargo has the potential to target specific tumor mechanisms responsible for tumor formation and progression to develop new therapeutic strategies and to increase the efficacy of antitumor therapies.

Collaboration


Dive into the Victoria James's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhakti Patel

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tyson V. Sharp

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge