Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Victoria M. Bedell is active.

Publication


Featured researches published by Victoria M. Bedell.


Nature | 2012

In vivo genome editing using a high-efficiency TALEN system

Victoria M. Bedell; Ying Wang; Jarryd M. Campbell; Tanya L. Poshusta; Colby G. Starker; Randall G. Krug; Wenfang Tan; Sumedha G. Penheiter; Alvin C.H. Ma; Anskar Y. H. Leung; Scott C. Fahrenkrug; Daniel F. Carlson; Daniel F. Voytas; Karl J. Clark; Jeffrey J. Essner; Stephen C. Ekker

The zebrafish (Danio rerio) is increasingly being used to study basic vertebrate biology and human disease with a rich array of in vivo genetic and molecular tools. However, the inability to readily modify the genome in a targeted fashion has been a bottleneck in the field. Here we show that improvements in artificial transcription activator-like effector nucleases (TALENs) provide a powerful new approach for targeted zebrafish genome editing and functional genomic applications. Using the GoldyTALEN modified scaffold and zebrafish delivery system, we show that this enhanced TALEN toolkit has a high efficiency in inducing locus-specific DNA breaks in somatic and germline tissues. At some loci, this efficacy approaches 100%, including biallelic conversion in somatic tissues that mimics phenotypes seen using morpholino-based targeted gene knockdowns. With this updated TALEN system, we successfully used single-stranded DNA oligonucleotides to precisely modify sequences at predefined locations in the zebrafish genome through homology-directed repair, including the introduction of a custom-designed EcoRV site and a modified loxP (mloxP) sequence into somatic tissue in vivo. We further show successful germline transmission of both EcoRV and mloxP engineered chromosomes. This combined approach offers the potential to model genetic variation as well as to generate targeted conditional alleles.


Briefings in Functional Genomics | 2011

Lessons from morpholino-based screening in zebrafish

Victoria M. Bedell; Stephanie E. Westcot; Stephen C. Ekker

Morpholino oligonucleotides (MOs) are an effective, gene-specific antisense knockdown technology used in many model systems. Here we describe the application of MOs in zebrafish (Danio rerio) for in vivo functional characterization of gene activity. We summarize our screening experience beginning with gene target selection. We then discuss screening parameter considerations and data and database management. Finally, we emphasize the importance of off-target effect management and thorough downstream phenotypic validation. We discuss current morpholino limitations, including reduced stability when stored in aqueous solution. Advances in MO technology now provide a measure of spatiotemporal control over MO activity, presenting the opportunity for incorporating more finely tuned analyses into MO-based screening. Therefore, with careful management, MOs remain a valuable tool for discovery screening as well as individual gene knockdown analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Nicotine response genetics in the zebrafish

Andrew M. Petzold; Darius Balciunas; Sridhar Sivasubbu; Karl J. Clark; Victoria M. Bedell; Stephanie E. Westcot; Shelly R. Myers; Gary L. Moulder; Mark J. Thomas; Stephen C. Ekker

Tobacco use is predicted to result in over 1 billion deaths worldwide by the end of the 21st century. How genetic variation contributes to the observed differential predisposition in the human population to drug dependence is unknown. The zebrafish (Danio rerio) is an emerging vertebrate model system for understanding the genetics of behavior. We developed a nicotine behavioral assay in zebrafish and applied it in a forward genetic screen using gene-breaking transposon mutagenesis. We used this method to molecularly characterize bdav/cct8 and hbog/gabbr1.2 as mutations with altered nicotine response. Each have a single human ortholog, identifying two points for potential scientific, diagnostic, and drug development for nicotine biology and cessation therapeutics. We show this insertional method generates mutant alleles that are reversible through Cre-mediated recombination, representing a conditional mutation system for the zebrafish. The combination of this reporter-tagged insertional mutagen approach and zebrafish provides a powerful platform for a rich array of questions amenable to genetic-based scientific inquiry, including the basis of behavior, epigenetics, plasticity, stress, memory, and learning.


Journal of Biological Chemistry | 2006

Robo4 Signaling in Endothelial Cells Implies Attraction Guidance Mechanisms

Sukhbir Kaur; Maria Domenica Castellone; Victoria M. Bedell; Martha Konar; J. Silvio Gutkind; Ramani Ramchandran

Roundabouts (robo) are cell-surface receptors that mediate repulsive signaling mechanisms at the central nervous system midline. However, robos may also mediate attraction mechanisms in the context of vascular development. Here, we have performed structure-function analysis of roundabout4 (Robo4), the predominant robo expressed in embryonic zebrafish vasculature and found by gain of function approaches in vitro that Robo4 activates Cdc42 and Rac1 Rho GTPases in endothelial cells. Indeed, complementary robo4 gene knockdown approaches in zebrafish embryos show lower amounts of active Cdc42 and Rac1 and angioblasts isolated from these knockdown embryos search actively for directionality and guidance cues. Furthermore, Robo4-expressing endothelial cells show morphology and phenotype, characteristic of Rho GTPase activation. Taken together, this study suggests that Robo4 mediates attraction-signaling mechanisms through Rho GTPases in vertebrate vascular guidance.


Journal of Cell Science | 2006

A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro

Guang Hu; Jian Tang; Bo Zhang; Yanfeng Lin; Jun-ichi Hanai; Jenna L. Galloway; Victoria M. Bedell; Nathan Bahary; Zhihua Han; Ramani Ramchandran; Bernard Thisse; Christine Thisse; Leonard I. Zon; Vikas P. Sukhatme

A zebrafish transcript dubbed GA2692 was initially identified via a whole-mount in situ hybridization screen for vessel specific transcripts. Its mRNA expression during embryonic development was detected in ventral hematopoietic and vasculogenic mesoderm and later throughout the vasculature up to 48 hours post fertilization. Morpholino-mediated knockdown of GA2692 in embryos resulted in multiple defects in vasculature, particularly, at sites undergoing active capillary sprouting: the intersegmental vessels, sub-intestinal vessels and the capillary sprouts of the pectoral fin vessel. During the course of these studies, a homology search indicated that GA2692 is the zebrafish orthologue of mammalian HspA12B, a distant member of the heat shock protein 70 (Hsp70) family. By a combination of northern blot and real-time PCR analysis, we showed that HspA12B is highly expressed in human endothelial cells in vitro. Knockdown of HspA12B by small interfering RNAs (siRNAs) in human umbilical vein endothelial cells blocked wound healing, migration and tube formation, whereas overexpression of HspA12B enhanced migration and accelerated wound healing - data that are consistent with the in vivo fish phenotype obtained in the morpholino-knockdown studies. Phosphorylation of Akt was consistently reduced by siRNAs against HspA12B. Overexpression of a constitutively active form of Akt rescued the inhibitory effects of knockdown of HspA12B on migration of human umbilical vein endothelial cells. Collectively, our data suggests that HspA12B is a highly endothelial-cell-specific distant member of the Hsp70 family and plays a significant role in endothelial cells during development and angiogenesis in vitro, partially attributable to modulation of Akt phosphorylation.


Zebrafish | 2010

SCORE Imaging: Specimen in a Corrected Optical Rotational Enclosure

Andrew M. Petzold; Victoria M. Bedell; Nicole J. Boczek; Jeffrey J. Essner; Darius Balciunas; Karl J. Clark; Stephen C. Ekker

Visual data collection is paramount for the majority of scientific research. The added transparency of the zebrafish (Danio rerio) allows for a greater detail of complex biological research that accompanies seemingly simple observational tools. We developed a visual data analysis and collection approach that takes advantage of the cylindrical nature of the zebrafish allowing for an efficient and effective method for image capture that we call Specimen in a Corrected Optical Rotational Enclosure imaging. To achieve a nondistorted image, zebrafish were placed in a fluorinated ethylene propylene tube with a surrounding optically corrected imaging solution (water). By similarly matching the refractive index of the housing (fluorinated ethylene propylene tubing) to that of the inner liquid and outer liquid (water), distortion was markedly reduced, producing a crisp imagable specimen that is able to be fully rotated 360 degrees. A similar procedure was established for fixed zebrafish embryos using convenient, readily available borosilicate capillaries surrounded by 75% glycerol. The method described here could be applied to chemical genetic screening and other related high-throughput methods within the fish community and among other scientific fields.


Development | 2012

The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development

Victoria M. Bedell; Anthony D. Person; Jon D. Larson; Anna McLoon; Darius Balciunas; Karl J. Clark; Kevin I. Neff; Katie Nelson; Brent R. Bill; Lisa A. Schimmenti; Soraya Beiraghi; Stephen C. Ekker

The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity.


Methods of Molecular Biology | 2015

Using Engineered Endonucleases to Create Knockout and Knockin Zebrafish Models

Victoria M. Bedell; Stephen C. Ekker

Over the last few years, the technology to create targeted knockout and knockin zebrafish animals has exploded. We have gained the ability to create targeted knockouts through the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR associated system (CRISPR/Cas). Furthermore, using the high-efficiency TALEN system, we were able to create knockin zebrafish using a single-stranded DNA (ssDNA) protocol described here. Through the use of these technologies, the zebrafish has become a valuable vertebrate model and an excellent bridge between the invertebrate and mammalian model systems for the study of human disease.


Journal of Cell Science | 2015

RhoC maintains vascular homeostasis by regulating VEGF-induced signaling in endothelial cells.

Luke H. Hoeppner; Sutapa Sinha; Ying Wang; Resham Bhattacharya; Shamit K. Dutta; Xun Gong; Victoria M. Bedell; Sandip Suresh; Chang Zoon Chun; Ramani Ramchandran; Stephen C. Ekker; Debabrata Mukhopadhyay

ABSTRACT Vasculogenesis and angiogenesis are controlled by vascular endothelial growth factor A (VEGF-A). Dysregulation of these physiological processes contributes to the pathologies of heart disease, cancer and stroke. Rho GTPase proteins play an integral role in VEGF-mediated formation and maintenance of blood vessels. The regulatory functions of RhoA and RhoB in vasculogenesis and angiogenesis are well defined, whereas the purpose of RhoC remains poorly understood. Here, we describe how RhoC promotes vascular homeostasis by modulating endothelial cell migration, proliferation and permeability. RhoC stimulates proliferation of human umbilical vein endothelial cells (HUVECs) by stabilizing nuclear β-catenin, which promotes transcription of cyclin D1 and subsequently drives cell cycle progression. RhoC negatively regulates endothelial cell migration through MAPKs and downstream MLC2 signaling, and decreases vascular permeability through downregulation of the phospholipase Cγ (PLCγ)–Ca2+–eNOS cascade in HUVECs. Using a VEGF-inducible zebrafish (Danio rerio) model, we observed significantly less vascular permeability in RhoC morpholino (MO)-injected zebrafish than control MO-injected zebrafish. Taken together, our findings suggest that RhoC is a key regulator of vascular homeostasis in endothelial cells. Highlighted Article: RhoC maintains vascular homeostasis in endothelial cells yet is dispensable for vascular development. Inhibition of RhoC represents an attractive therapeutic approach to prevent cancer metastasis.


Gene Expression Patterns | 2012

Expression of sclerostin in the developing zebrafish (Danio rerio) brain and skeleton.

Melissa S. McNulty; Victoria M. Bedell; Tammy M. Greenwood; Theodore A. Craig; Stephen C. Ekker; Rajiv Kumar

Sclerostin is a highly conserved, secreted, cystine-knot protein which regulates osteoblast function. Humans with mutations in the sclerostin gene (SOST), manifest increased axial and appendicular skeletal bone density with attendant complications. In adult bone, sclerostin is expressed in osteocytes and osteoblasts. Danio rerio sclerostin-like protein is closely related to sea bass sclerostin, and is related to chicken and mammalian sclerostins. Little is known about the expression of sclerostin in early developing skeletal or extra-skeletal tissues. We assessed sclerostin (sost) gene expression in developing zebrafish (D. rerio) embryos with whole mount is situ hybridization methods. The earliest expression of sost mRNA was noted during 12h post-fertilization (hpf). At 15 hpf, sost mRNA was detected in the developing nervous system and in Kupffers vesicle. At 18, 20 and 22 hpf, expression in rhombic lip precursors was seen. By 24 hpf, expression in the upper and lower rhombic lip and developing spinal cord was noted. Expression in the rhombic lip and spinal cord persisted through 28 hpf and then diminished in intensity through 44 hpf. At 28 hpf, sost expression was noted in developing pharyngeal cartilage; expression in pharyngeal cartilage increased with time. By 48 hpf, sost mRNA was clearly detected in the developing pharyngeal arch cartilage. Sost mRNA was abundantly expressed in the pharyngeal arch cartilage, and in developing pectoral fins, 72, 96 and 120 hpf. Our study is the first detailed analysis of sost gene expression in early metazoan development.

Collaboration


Dive into the Victoria M. Bedell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramani Ramchandran

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Resham Bhattacharya

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge