Victoria Pham
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Victoria Pham.
Cell | 2009
Zhaoyu Jin; Yun Li; Robert M. Pitti; David A. Lawrence; Victoria Pham; Jennie R. Lill; Avi Ashkenazi
Cell-surface death receptors such as DR4 and DR5 trigger apoptosis through a death-inducing signaling complex (DISC) that recruits the apical protease caspase-8. Apoptosis commitment requires efficient activation and autocatalytic release of caspase-8 into the cytoplasm to engage executioner caspases. While DISC recruitment initiates caspase-8 stimulation, full activation of the protease depends on further molecular aggregation events that are not fully understood. Here, we show that death receptor ligation induces polyubiquitination of caspase-8, through a previously unknown interaction of the DISC with a cullin3 (CUL3)-based E3 ligase. CUL3-mediated caspase-8 polyubiquitination required the RING box protein RBX1, whereas the deubiquitinase A20 reversed this modification. The ubiquitin-binding protein p62/sequestosome-1 promoted aggregation of CUL3-modified caspase-8 within p62-dependent foci, leading to full activation and processing of the enzyme and driving commitment to cell death. These results identify a mechanism that positively controls apoptosis signaling by polyubiquitination and aggregation of a key initiator caspase.
Science | 2012
Anwesha Dey; Dhaya Seshasayee; Rajkumar Noubade; Dorothy French; Jinfeng Liu; Mira S. Chaurushiya; Donald S. Kirkpatrick; Victoria Pham; Jennie R. Lill; Corey E. Bakalarski; Jiansheng Wu; Lilian Phu; Paula Katavolos; Lindsay M. LaFave; Omar Abdel-Wahab; Zora Modrusan; Somasekar Seshagiri; Ken Dong; Zhonghua Lin; Mercedesz Balazs; Rowena Suriben; Kim Newton; Sarah G. Hymowitz; Guillermo Garcia-Manero; Flavius Martin; Ross L. Levine; Vishva M. Dixit
Identifying BAP1 Targets Inactivating mutations in the deubiquitinating enzyme BAP1 have been associated with cancer. Dey et al. (p. 1541, published online 9 August; see the Perspective by White and Harper) reveal molecular targets of the enzyme and show evidence for a role in leukemia. Mice specifically lacking the target of BAP1, HCF-1, in the bone marrow developed myeloid leukemia. BAP1 appears to be part of a complex that regulates modification of histones and gene expression important for normal hematopoiesis and tumor suppression. The deubiquitinating enzyme BAP1 is implicated in myelodysplastic syndrome. De-ubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knockin mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with host cell factor–1 (HCF-1), O-linked N-acetylglucosamine transferase (OGT), and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mice and humans.
Mass Spectrometry Reviews | 2007
Jennie R. Lill; Elizabeth S. Ingle; Peter Liu; Victoria Pham; Wendy Sandoval
State-of-the-art proteomic analysis has recently undergone a rapid evolution; with more high-throughput analytical instrumentation and informatic tools available, sample preparation is becoming one of the rate-limiting steps in protein characterization workflows. Recently several protocols have appeared in the literature that employ microwave irradiation as a tool for the preparation of biological samples for subsequent mass spectrometric characterization. Techniques for microwave-assisted bio-catalyzed reactions (including sample reduction and alkylation, enzymatic and chemical digestion, removal and analysis of post-translational modifications and characterization of enzymes and protein-interaction sites) are described. This review summarizes the various approaches undertaken, instrumentation employed, and reduction in overall experimental time observed when microwave assistance is applied.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Cary D. Austin; David A. Lawrence; Andrew A. Peden; Eugene Varfolomeev; Klara Totpal; Ann De Mazière; Judith Klumperman; David Arnott; Victoria Pham; Richard H. Scheller; Avi Ashkenazi
Endocytosis is crucial for various aspects of cell homeostasis. Here, we show that proapoptotic death receptors (DRs) trigger selective destruction of the clathrin-dependent endocytosis machinery. DR stimulation induced rapid, caspase-mediated cleavage of key clathrin-pathway components, halting cellular uptake of the classic cargo protein transferrin. DR-proximal initiator caspases cleaved the clathrin adaptor subunit AP2α between functionally distinct domains, whereas effector caspases processed clathrin’s heavy chain. DR5 underwent ligand-induced, clathrin-mediated endocytosis, suggesting that internalization of DR signaling complexes facilitates clathrin-pathway targeting by caspases. An endocytosis-blocking, temperature-sensitive dynamin-1 mutant attenuated DR internalization, enhanced caspase stimulation downstream of DRs, and increased apoptosis. Thus, DR-triggered caspase activity disrupts clathrin-dependent endocytosis, leading to amplification of programmed cell death.
Molecular Cell | 2011
XiaoDong Huang; Matthew K. Summers; Victoria Pham; Jennie R. Lill; Jinfeng Liu; Gwanghee Lee; Donald S. Kirkpatrick; Peter K. Jackson; Guowei Fang; Vishva M. Dixit
Cell cycle progression requires the E3 ubiquitin ligase anaphase-promoting complex (APC/C), which uses the substrate adaptors CDC20 and CDH1 to target proteins for proteasomal degradation. The APC(CDH1) substrate cyclin A is critical for the G1/S transition and, paradoxically, accumulates even when APC(CDH1) is active. We show that the deubiquitinase USP37 binds CDH1 and removes degradative polyubiquitin from cyclin A. USP37 was induced by E2F transcription factors in G1, peaked at G1/S, and was degraded in late mitosis. Phosphorylation of USP37 by CDK2 stimulated its full activity. USP37 overexpression caused premature cyclin A accumulation in G1 and accelerated S phase entry, whereas USP37 knockdown delayed these events. USP37 was inactive in mitosis because it was no longer phosphorylated by CDK2. Indeed, it switched from an antagonist to a substrate of APC(CDH1) and was modified with degradative K11-linked polyubiquitin.
Nature Biotechnology | 2008
Nuno Bandeira; Victoria Pham; Pavel A. Pevzner; David Arnott; Jennie R. Lill
De novo protein sequencing of monoclonal antibodies is required when the cDNA or the original cell line is not available, or when characterization of posttranslational modifications is needed to verify antibody integrity and effectiveness. We demonstrate that Comparative Shotgun Protein Sequencing (CSPS) based on tandem mass spectrometry can reduce the time required to sequence an antibody to 72 hours, a dramatic reduction as compared to the classical technique of Edman degradation. We therefore argue that CSPS has the potential to be a disruptive technology for all protein sequencing applications.
Molecular and Cellular Biology | 2009
Sebastián Guelman; Kenji Kozuka; Yifan Mao; Victoria Pham; Mark J. Solloway; John L. Wang; Jiansheng Wu; Jennie R. Lill; Jiping Zha
ABSTRACT Acetylation of the histone tails, catalyzed by histone acetyltransferases (HATs), is a well-studied process that contributes to transcriptionally active chromatin states. Here we report the characterization of a novel mammalian HAT complex, which contains the two acetyltransferases GCN5 and ATAC2 as well as other proteins linked to chromatin metabolism. This multisubunit complex has a similar but distinct subunit composition to that of the Drosophila ADA2A-containing complex (ATAC). Recombinant ATAC2 has a weak HAT activity directed to histone H4. Moreover, depletion of ATAC2 results in the disassembly of the complex, indicating that ATAC2 not only carries out an enzymatic function but also plays an architectural role in the stability of mammalian ATAC. By targeted disruption of the Atac2 locus in mice, we demonstrate for the first time the essential role of the ATAC complex in mammalian development, histone acetylation, cell cycle progression, and prevention of apoptosis during embryogenesis.
FEBS Letters | 2006
Conrad Yap Edosada; Clifford Quan; Thuy Tran; Victoria Pham; Christian Wiesmann; Wayne J. Fairbrother; Beni B. Wolf
Fibroblast activation protein (FAP) is a serine protease of undefined endopeptidase specificity implicated in tumorigenesis. To characterize FAPs P 4 – P 2 ′ specificity, we synthesized intramolecularly quenched fluorescent substrate sets based on the FAP cleavage site in α2‐antiplasmin (TSGP‐NQ). FAP required substrates with Pro at P1 and Gly or d‐amino acids at P2 and preferred small, uncharged amino acids at P3, but tolerated most amino acids at P4, P 1 ′ and P 2 ′ . These substrate preferences allowed design of peptidyl‐chloromethyl ketones that inhibited FAP, but not the related protease, dipeptidyl peptidase‐4. Thus, FAP is a narrow specificity endopeptidase and this can be exploited for inhibitor design.
Nature | 2016
Kim Newton; Katherine E. Wickliffe; Allie Maltzman; Debra L. Dugger; Andreas Strasser; Victoria Pham; Jennie R. Lill; Merone Roose-Girma; Søren Warming; Margaret Solon; Hai Ngu; Joshua D. Webster; Vishva M. Dixit
Receptor-interacting protein kinase 1 (RIPK1) promotes cell survival—mice lacking RIPK1 die perinatally, exhibiting aberrant caspase-8-dependent apoptosis and mixed lineage kinase-like (MLKL)-dependent necroptosis. However, mice expressing catalytically inactive RIPK1 are viable, and an ill-defined pro-survival function for the RIPK1 scaffold has therefore been proposed. Here we show that the RIP homotypic interaction motif (RHIM) in RIPK1 prevents the RHIM-containing adaptor protein ZBP1 (Z-DNA binding protein 1; also known as DAI or DLM1) from activating RIPK3 upstream of MLKL. Ripk1RHIM/RHIM mice that expressed mutant RIPK1 with critical RHIM residues IQIG mutated to AAAA died around birth and exhibited RIPK3 autophosphorylation on Thr231 and Ser232, which is a hallmark of necroptosis, in the skin and thymus. Blocking necroptosis with catalytically inactive RIPK3(D161N), RHIM mutant RIPK3, RIPK3 deficiency, or MLKL deficiency prevented lethality in Ripk1RHIM/RHIM mice. Loss of ZBP1, which engages RIPK3 in response to certain viruses but previously had no defined role in development, also prevented perinatal lethality in Ripk1RHIM/RHIM mice. Consistent with the RHIM of RIPK1 functioning as a brake that prevents ZBP1 from engaging the RIPK3 RHIM, ZBP1 interacted with RIPK3 in Ripk1RHIM/RHIMMlkl−/− macrophages, but not in wild-type, Mlkl−/− or Ripk1RHIM/RHIMRipk3RHIM/RHIM macrophages. Collectively, these findings indicate that the RHIM of RIPK1 is critical for preventing ZBP1/RIPK3/MLKL-dependent necroptosis during development.
Science | 2013
Xiao Dong Huang; James C. McGann; Bob Y. Liu; Rami N. Hannoush; Jennie R. Lill; Victoria Pham; Kim Newton; Michael Kakunda; Jinfeng Liu; Christine Yu; Sarah G. Hymowitz; Jo Anne Hongo; Anthony Wynshaw-Boris; Paul Polakis; Richard M. Harland; Vishva M. Dixit
Three Tales of Wnt Signaling The Wnt signaling pathway has important roles in regulating many biological processes during development and is also implicated in the behavior of some cancer cells (see the Perspective by Berndt and Moon). Cruciat et al. (p. 1436, published online 14 February) describe the mechanism of action of a protein found in a screen for proteins that influence Wnt signaling. DDX3, a DEAD-box RNA helicase, is required for proper Wnt signaling in Xenopus and Caenorhabditis elegans. It appears to act not through its action as an RNA helicase or through adenosine triphosphate binding, but rather by interacting with the protein kinase, casein kinase 1, and promoting its activation. Huang et al. (p. 1441, published online 31 January) investigated the function of receptor-interacting protein kinase 4 (RIPK4), the product a gene whose mutation causes severe developmental defects in mice and humans. Over-expression of the protein in cultured human cells activated transcription of genes regulated by the Wnt signaling pathway, and loss of RIPK4 function inhibited Wnt signaling in Xenopus embryos. At the molecular level, RIPK4 interacted with the Wnt co-receptor LRP6 and the Wnt signaling adaptor protein DVL2 and promoted phosphorylation of DVL2. Habib et al. (p. 1445) used Wnt-immobilized beads to understand how external cues direct asymmetrical stem cell divisions. Spatially restricted Wnt signals oriented the plane of mitotic division and lead to pluripotency gene expression in the Wnt-proximal daughter cell while the more distal daughter cell acquired hallmarks of differentiation. Thus, asymmetric gene expression patterns can arise as a consequence of orientation by a short-range signal. The protein kinase RIPK4 is identified as a component of the Wnt signaling pathway. [Also see Perspective by Berndt and Moon] Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic β-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.