Viet Giang Truong
Okinawa Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Viet Giang Truong.
Applied Physics Letters | 2011
Gopinadhan Kalon; Young Jun Shin; Viet Giang Truong; Alan Kalitsov; Hyunsoo Yang
Understanding the origin of hysteresis in the channel resistance from top gated graphene transistors is important for transistor applications. Capacitance-voltage measurements across the gate oxide on top gated bilayer graphene show hysteresis with a charging and discharging time constant of ∼100 μs. However, the measured capacitance across the graphene channel does not show any hysteresis but shows an abrupt jump at a high channel voltage due to the emergence of an order, indicating that the origin of hysteresis between gate and source is due to charge traps present in the gate oxide and graphene interface.
Sensors | 2013
Michael Morrissey; Kieran Deasy; Mary Frawley; Ravi Kumar; Eugen Prel; Laura Russell; Viet Giang Truong; Síle Nic Chormaic
The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications.
Optics Express | 2014
Mary Frawley; Ivan Gusachenko; Viet Giang Truong; Marios Sergides; S. Nic Chormaic
The evanescent field of an optical nanofiber presents a versatile interface for the manipulation of micron-scale particles in dispersion. Here, we present a detailed study of the optical binding interactions of a pair of 3.13 μm SiO(2) spheres in the nanofiber evanescent field. Preferred equilibrium positions for the spheres as a function of nanofiber diameter and sphere size are discussed. We demonstrated optical propulsion and self-arrangement of chains of one to seven 3.13 μm SiO(2) particles; this effect is associated with optical binding via simulated trends of multiple scattering effects. Incorporating an optical nanofiber into an optical tweezers setup facilitated the individual and collective introduction of selected particles to the nanofiber evanescent field for experiments. Computational simulations provide insight into the dynamics behind the observed behavior.
Scientific Reports | 2015
Aili Maimaiti; Viet Giang Truong; Marios Sergides; Ivan Gusachenko; Síle Nic Chormaic
Optical manipulation in the vicinity of optical micro- and nanofibres has shown potential across several fields in recent years, including microparticle control, and cold atom probing and trapping. To date, most work has focussed on the propagation of the fundamental mode through the fibre. However, along the maximum mode intensity axis, higher order modes have a longer evanescent field extension and larger field amplitude at the fibre waist compared to the fundamental mode, opening up new possibilities for optical manipulation and particle trapping. We demonstrate a microfibre/optical tweezers compact system for trapping and propelling dielectric particles based on the excitation of the first group of higher order modes at the fibre waist. Speed enhancement of polystyrene particle propulsion was observed for the higher order modes compared to the fundamental mode for particles ranging from 1 μm to 5 μm in diameter. The optical propelling velocity of a single, 3 μm polystyrene particle was found to be 8 times faster under the higher order mode than the fundamental mode field for a waist power of 25 mW. Experimental data are supported by theoretical calculations. This work can be extended to trapping and manipulation of laser-cooled atoms with potential for quantum networks.
Applied Physics Letters | 2012
Jing Niu; Viet Giang Truong; Han Huang; S. Tripathy; Caiyu Qiu; Andrew Thye Shen Wee; Ting Yu; Hyunsoo Yang
The electromagnetic enhancement for surface enhanced Raman spectroscopy (SERS) of graphene is studied by inserting a layer of Al2O3 between epitaxial graphene and Au nanoparticles. Different excitation lasers are utilized to study the relationship between laser wavelength and SERS. The theoretical calculation shows that the extinction spectrum of Au nanoparticles is modulated by the presence of graphene. The experimental results of the relationship between the excitation laser wavelength and the enhancement factor fit well with the calculated results. An exponential relationship is observed between the enhancement factor and the thickness of the spacer layer.
New Journal of Physics | 2014
Mark Daly; Viet Giang Truong; Ciarán Phelan; Kieran Deasy; S Nic Chormaic
We propose an optical dipole trap for cold, neutral atoms based on the electric field produced from the evanescent fields in a hollow, rectangular slot cut through an optical nanofibre. In particular, we discuss the trap performance in relation to laser-cooled rubidium atoms and show that a far off-resonance, blue-detuned field combined with the attractive surface-atom interaction potential from the dielectric material forms a stable trapping configuration. With the addition of a red-detuned field, we demonstrate how three dimensional confinement of the atoms at a distance of 140–200 nm from the fibre surface within the slot can be accomplished. This scheme facilitates optical coupling between the atoms and the nanofibre that could be exploited for quantum communication schemes using ensembles of laser-cooled atoms.
Scientific Reports | 2016
Aili Maimaiti; Daniela Holzmann; Viet Giang Truong; Helmut Ritsch; Síle Nic Chormaic
Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Here, we study one dimensional longitudinal optical binding interactions of chains of 3 μm polystyrene spheres under the influence of the evanescent fields of a two-mode microfibre. The observation of long-range interactions, self-ordering and speed variation of particle chains reveals strong optical binding effects between the particles that can be modelled well by a tritter scattering-matrix approach. The optical forces, optical binding interactions and the velocity of bounded particle chains are calculated using this method. Results show good agreement with finite element numerical simulations. Experimental data and theoretical analysis show that higher order modes in a microfibre offer a promising method to not only obtain stable, multiple particle trapping or faster particle propulsion speeds, but that they also allow for better control over each individual trapped object in particle ensembles near the microfibre surface.
Optics Express | 2016
Mark Daly; Viet Giang Truong; Síle Nic Chormaic
While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping become so large as to quickly denature the trapped objects in such diffraction-limited systems. Here, we present an evanescent field-based device capable of confining low index nanoscale particles using modest optical powers as low as 1.2 mW, with additional applications in the field of cold atom trapping. Our experiment uses a nanostructured optical micro-nanofiber to trap 200 nm, low index contrast, fluorescent particles within the structured region, thereby overcoming diffraction limitations. We analyze the trapping potential of this device both experimentally and theoretically, and show how strong optical traps are achieved with low input powers.
Physical Review A | 2017
Fam Le Kien; Thomas Busch; Viet Giang Truong; Síle Nic Chormaic
We present a systematic treatment of higher-order modes of vacuum-clad ultrathin optical fibers. We show that, for a given fiber, the higher-order modes have larger penetration lengths, larger effective mode radii, and larger fractional powers outside the fiber than the fundamental mode. We calculate, both analytically and numerically, the Poynting vector, propagating power, energy, angular momentum, and helicity (or chirality) of the guided light. The axial and azimuthal components of the Poynting vector can be negative with respect to the direction of propagation and the direction of phase circulation, respectively, depending on the position, the mode type, and the fiber parameters. The orbital and spin parts of the Poynting vector may also have opposite signs in some regions of space. We show that the angular momentum per photon decreases with increasing fiber radius and increases with increasing azimuthal mode order. The orbital part of angular momentum of guided light depends not only on the phase gradient but also on the field polarization, and is positive with respect to the direction of the phase circulation axis. Meanwhile, depending on the mode type, the spin and surface parts of angular momentum and the helicity of the field can be negative with respect to the direction of the phase circulation axis.
Proceedings of SPIE | 2014
Ivan Gusachenko; Mary Frawley; Viet Giang Truong; Síle Nic Chormaic
Precise control of particle positioning is desirable in many optical propulsion and sorting applications. Here, we develop an integrated platform for particle manipulation consisting of a combined optical nanofiber and optical tweezers system. Individual silica microspheres were introduced to the nanofiber at arbitrary points using the optical tweezers, thereby producing pronounced dips in the fiber transmission. We show that such consistent and reversible transmission modulations depend on both particle and fiber diameter, and may be used as a reference point for in-situ nanofiber or particle size measurement. Therefore we combine SEM size measurements with nanofiber transmission data to provide calibration for particle-based fiber assessment. We also demonstrate how the optical tweezers can be used to create a ‘particle jet’ to feed a supply of microspheres to the nanofiber surface, forming a particle conveyor belt. This integrated optical platform provides a method for selective evanescent field manipulation of micron-sized particles and facilitates studies of optical binding and light-particle interaction dynamics.