Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijay Krishna Raghunathan is active.

Publication


Featured researches published by Vijay Krishna Raghunathan.


Acta Biomaterialia | 2014

Elastic modulus and collagen organization of the rabbit cornea: Epithelium to endothelium

Sara M. Thomasy; Vijay Krishna Raghunathan; Moritz Winkler; Christopher M. Reilly; Adeline Sadeli; Paul Russell; James V. Jester; Christopher J. Murphy

The rabbit is commonly used to evaluate new corneal prosthetics and study corneal wound healing. Knowledge of the stiffness of the rabbit cornea would better inform the design and fabrication of keratoprosthetics and substrates with relevant mechanical properties for in vitro investigations of corneal cellular behavior. This study determined the elastic modulus of the rabbit corneal epithelium, anterior basement membrane (ABM), anterior and posterior stroma, Descemets membrane (DM) and endothelium using atomic force microscopy (AFM). In addition, three-dimensional collagen fiber organization of the rabbit cornea was determined using nonlinear optical high-resolution macroscopy. The elastic modulus as determined by AFM for each corneal layer was: epithelium, 0.57 ± 0.29 kPa (mean ± SD); ABM, 4.5 ± 1.2 kPa, anterior stroma, 1.1 ± 0.6 kPa; posterior stroma, 0.38 ± 0.22 kPa; DM, 11.7 ± 7.4 kPa; and endothelium, 4.1 ± 1.7 kPa. The biophysical properties, including the elastic modulus, are unique for each layer of the rabbit cornea and are dramatically softer in comparison to the corresponding regions of the human cornea. Collagen fiber organization is also dramatically different between the two species, with markedly less intertwining observed in the rabbit vs. human cornea. Given that the substratum stiffness considerably alters the corneal cell behavior, keratoprosthetics that incorporate mechanical properties simulating the native human cornea may not elicit optimal cellular performance in rabbit corneas that have dramatically different elastic moduli. These data should allow for the design of substrates that better mimic the biomechanical properties of the corneal cellular environment.


Investigative Ophthalmology & Visual Science | 2013

Role of Substratum Stiffness in Modulating Genes Associated with Extracellular Matrix and Mechanotransducers YAP and TAZ

Vijay Krishna Raghunathan; Joshua T. Morgan; Britta Dreier; Christopher M. Reilly; Sara M. Thomasy; Joshua A. Wood; Irene Ly; Binh C. Tuyen; Marissa L. Hughbanks; Christopher J. Murphy; Paul Russell

PURPOSE Primary open-angle glaucoma is characterized by increased resistance to aqueous humor outflow and a stiffer human trabecular meshwork (HTM). Two Yorkie homologues, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif, encoded by WWTR1 (TAZ), are mechanotransducers of the extracellular-microenvironment and coactivators of transcription. Here, we explore how substratum stiffness modulates the YAP/TAZ pathway and extracellular matrix genes in HTM cells and how this may be play a role in the onset and progression of glaucoma. METHODS HTM cells from normal donors were cultured on hydrogels mimicking the stiffness of normal (5 kPa) and glaucomatous (75 kPa) HTM. Changes in expression of YAP/TAZ related genes and steroid responsiveness were determined. Additionally, transglutaminase-2 expression was determined after YAP silencing. RESULTS YAP and TAZ are both expressed in human trabecular meshwork cells. In vitro, YAP and TAZ were inversely regulated by substratum stiffness. YAP and 14-3-3σ were downregulated to different extents on stiffer substrates; TAZ, tissue transglutaminase (TGM2), and soluble frizzled-related protein-1 (sFRP-1) were significantly upregulated. CTGF expression appeared to be altered differentially by both YAP and TAZ. Myocilin and angiopoietin-like 7 expression in response to dexamethasone was more pronounced on stiffer substrates. We demonstrated a direct effect by YAP on TGM2 when YAP was silenced by small interfering RNA. CONCLUSIONS The expression of YAP/TAZ and ECM-related-genes is impacted on physiologically relevant substrates. YAP was upregulated in cells on softer substrates. Stiffer substrates resulted in upregulation of canonical Wnt modulators, TAZ and sFRP-1, and thus may influence the progression of glaucoma. These results demonstrate the importance of YAP/TAZ in the HTM and suggest their role in glaucoma.


Investigative Ophthalmology & Visual Science | 2015

Dexamethasone Stiffens Trabecular Meshwork, Trabecular Meshwork Cells, and Matrix

Vijay Krishna Raghunathan; Joshua T. Morgan; Shin Ae Park; Darren Weber; Brett S. Phinney; Christopher J. Murphy; Paul Russell

PURPOSE Treatment with corticosteroids can result in ocular hypertension and may lead to the development of steroid-induced glaucoma. The extent to which biomechanical changes in trabecular meshwork (TM) cells and extracellular matrix (ECM) contribute toward this dysfunction is poorly understood. METHODS Primary human TM (HTM) cells were cultured for either 3 days or 4 weeks in the presence or absence of dexamethasone (DEX), and cell mechanics, matrix mechanics and proteomics were determined, respectively. Adult rabbits were treated topically with either 0.1% DEX or vehicle over 3 weeks, and mechanics of the TM were determined. RESULTS Treatment with DEX for 3 days resulted in a 2-fold increase in HTM cell stiffness, and this correlated with activation of extracellular signal-related kinase 1/2 (ERK1/2) and overexpression of α-smooth muscle actin (αSMA). Further, the matrix deposited by HTM cells chronically treated with DEX is approximately 4-fold stiffer, more organized, and has elevated expression of matrix proteins commonly implicated in glaucoma (decorin, myocilin, fibrillin, secreted frizzle-related protein [SFRP1], matrix-gla). Also, DEX treatment resulted in a 3.5-fold increase in stiffness of the rabbit TM. DISCUSSION This integrated approach clearly demonstrates that DEX treatment increases TM cell stiffness concurrent with elevated αSMA expression and activation of the mitogen-activated protein kinase (MAPK) pathway, stiffens the ECM in vitro along with upregulation of Wnt antagonists and fibrotic markers embedded in a more organized matrix, and increases the stiffness of TM tissues in vivo. These results demonstrate glucocorticoid treatment can initiate the biophysical alteration associated with increased resistance to aqueous humor outflow and the resultant increase in IOP.


Biophysical Journal | 2011

Topographic Modulation of the Orientation and Shape of Cell Nuclei and Their Influence on the Measured Elastic Modulus of Epithelial Cells

Clayton T. McKee; Vijay Krishna Raghunathan; Paul F. Nealey; Paul Russell; Christopher J. Murphy

The influence of nucleus shape and orientation on the elastic modulus of epithelial cells was investigated with atomic force microscopy. The shape and orientation were controlled by presenting the epithelial cells with anisotropic parallel ridges and grooves of varying pitch at the cell substratum. As the cells oriented to the underlying topography, the volume of the nucleus increased as the pitch of the topography increased from 400 nm to 2000 nm. The increase in nucleus volume was reflected by an increase in the measured elastic modulus of the topographically aligned cells. Significant alterations in the shape of the nucleus, by intimate contact with the topographic ridge and grooves of the underlying cell, were also observed via confocal microscopy, indicating that the nucleus may also act as a direct mechanosensor of substratum topography.


Investigative Ophthalmology & Visual Science | 2012

Substratum Compliance Modulates Corneal Fibroblast to Myofibroblast Transformation

Britta Dreier; Sara M. Thomasy; Rima Mendonsa; Vijay Krishna Raghunathan; Paul Russell; Christopher J. Murphy

PURPOSE The transformation of fibroblasts to myofibroblasts is critical to corneal wound healing, stromal haze formation, and scarring. It has recently been demonstrated that the provision of biomimetic substratum topographic cues inhibits the progression toward the myofibroblast phenotype under the influence of transforming growth factor β1 (TGF-β1). The objective of this study was to determine the effect of another fundamental biophysical cue, substrate compliance, on TGF-β1-induced myofibroblast transformation of primary corneal cells isolated from human and rabbit corneas. METHODS Human and rabbit corneal fibroblasts were cultured on surfaces of varying substrate compliance (4-71 kPa) and tissue culture plastic (TCP) (> 1 gigapascal [GPa]). Cells were cultured in media containing TGF-β1 at concentrations of 0, 1, or 10 ng/mL for 72 hours. RNA and protein were collected from cells cultured on polyacrylamide gels and TCP and were analyzed for the expression of α-smooth muscle actin (α-SMA), a key marker of myofibroblast transformation, using quantitative PCR, immunocytochemistry, and Western blot. RESULTS Cells grown on more compliant substrates demonstrated significantly reduced amounts of α-SMA mRNA compared with TCP. Immunocytochemistry and Western blot analysis determining the presence of α-SMA corroborated this finding, thus confirming a reduced transformation to the myofibroblast phenotype on more compliant substrates compared with cells on TCP in the presence of TGF-β1. CONCLUSIONS These data indicate that substrate compliance modulates TGF-β1-induced expression of α-SMA and thus influences myofibroblast transformation in the corneal stroma. This provides further evidence that biomimetic biophysical cues inhibit myofibroblast transformation and participate in stabilizing the native cellular phenotype.


PLOS ONE | 2014

PDGF-BB does not accelerate healing in diabetic mice with splinted skin wounds.

Shin A e Park; Vijay Krishna Raghunathan; Nihar M. Shah; Leandro B. C. Teixeira; Monica J. Motta; Jill Covert; Richard R. Dubielzig; Michael J. Schurr; R. Rivkah Isseroff; Nicholas L. Abbott; Jonathan F. McAnulty; Christopher J. Murphy

Topical application of platelet-derived growth factor-BB (PDGF-BB) is considered to accelerate tissue repair of impaired chronic wounds. However, the vast literature is plagued with conflicting reports of its efficacy in animal models and this is often influenced by a wide array of experimental variables making it difficult to compare the results across the studies. To mitigate the confounding variables that influence the efficacy of topically applied PDGF-BB, we used a controlled full thickness splinted excisional wound model in db/db mice (type 2 diabetic mouse model) for our investigations. A carefully-defined silicone-splinted wound model, with reduced wound contraction, controlled splint and bandage maintenance, allowing for healing primarily by reepithelialization was employed. Two splinted 8 mm dorsal full thickness wounds were made in db/db mice. Wounds were topically treated once daily with either 3 µg PDGF-BB in 30 µl of 5% PEG-PBS vehicle or an equal volume of vehicle for 10 days. Body weights, wound contraction, wound closure, reepithelialization, collagen content, and wound bed inflammation were evaluated clinically and histopathologically. The bioactivity of PDGF-BB was confirmed by in vitro proliferation assay. PDGF-BB, although bioactive in vitro, failed to accelerate wound healing in vivo in the db/db mice using the splinted wound model. Considering that the predominant mechanism of wound healing in humans is by re-epeithelialization, the most appropriate model for evaluating therapeutics is one that uses splints to prevent excessive wound contraction. Here, we report that PDGF-BB does not promote wound closure by re-epithelialization in a murine splinted wound model. Our results highlight that the effects of cytoactive factors reported in vivo ought to be carefully interpreted with critical consideration of the wound model used.


ACS Applied Materials & Interfaces | 2015

Impact of Nanotopography, Heparin Hydrogel Microstructures, and Encapsulated Fibroblasts on Phenotype of Primary Hepatocytes.

Jungmok You; Vijay Krishna Raghunathan; Kyung Jin Son; Dipali Patel; Amranul Haque; Christopher J. Murphy; Alexander Revzin

Hepatocytes, the main epithelial cell type in the liver, perform most of the biochemical functions of the liver. Thus, maintenance of a primary hepatocyte phenotype is crucial for investigations of in vitro drug metabolism, toxicity, and development of bioartificial liver constructs. Here, we report the impact of topographic cues alone and in combination with soluble signals provided by encapsulated feeder cells on maintenance of the primary hepatocyte phenotype. Topographic features were 300 nm deep with pitches of either 400, 1400, or 4000 nm. Hepatocyte cell attachment, morphology and function were markedly better on 400 nm pitch patterns compared with larger scale topographies or planar substrates. Interestingly, topographic features having biomimetic size scale dramatically increased cell adhesion whether or not substrates had been precoated with collagen I. Albumin production in primary hepatocytes cultured on 400 nm pitch substrates without collagen I was maintained over 10 days and was considerably higher compared to albumin synthesis on collagen-coated flat substrates. In order to investigate the potential interaction of soluble cytoactive factors supplied by feeder cells with topographic cues in determining cell phenotype, bioactive heparin-containing hydrogel microstructures were molded (100 μm spacing, 100 μm width) over the surface of the topographically patterned substrates. These hydrogel microstructures either carried encapsulated fibroblasts or were free of cells. Hepatocytes cultured on nanopatterned substrates next to fibroblast carrying hydrogel microstructures were significantly more functional than hepatocytes cultured on nanopatterned surfaces without hydrogels or stromal cells significantly elevated albumin expression and cell junction formation compared to cells provided with topographic cues only. The simultaneous presentation of topographic biomechanical cues along with soluble signaling molecules provided by encapsulated fibroblasts cells resulted in optimal functionality of cultured hepatocytes. The provision of both topographic and soluble signaling cues could enhance our ability to create liver surrogates and inform the development of engineered liver constructs.


Journal of Ocular Pharmacology and Therapeutics | 2014

Human trabecular meshwork cells exhibit several characteristics of, but are distinct from, adipose-derived mesenchymal stem cells.

Joshua T. Morgan; Joshua A. Wood; Naomi J. Walker; Vijay Krishna Raghunathan; Dori L. Borjesson; Christopher J. Murphy; Paul Russell

PURPOSE To support the growing promise of regenerative medicine in glaucoma, we characterized the similarities and differences between human trabecular meshwork (HTM) cells and human mesenchymal stem cells (hMSCs). METHODS HTM cells and hMSCs were phenotypically characterized by flow cytometry. Using quantitative polymerase chain reaction, the expression of myoc, angptl7, sox2, pou5f1, and notch1 was determined in both cell types with and without dexamethasone (Dex). Immunosuppressive behavior of HTM cells and hMSCs was determined using T cells activated with phytohemagglutinin. T-cell proliferation was determined using BrdU incorporation and flow cytometry. Multipotency of HTM cells and hMSCs was determined using adipogenic and osteogenic differentiation media as well as aqueous humor (AH). Alpha-smooth muscle actin (αSMA) expression was determined in HTM cells, hMSCs, and HTM tissue. RESULTS Phenotypically, HTM and hMSCs expressed CD73, CD90, CD105, and CD146 but not CD31, CD34, and CD45 and similar sox2, pou5f1, and notch1 expression. Both cell types suppressed T-cell proliferation. However, HTM cells, but not hMSCs, upregulated myoc and angptl7 in response to Dex. Additionally, HTM cells did not differentiate into adipocytes or osteocytes. Culture of hMSCs in 20%, but not 100%, AH potently induced alkaline phosphatase activity. HTM cells in culture possessed uniformly strong expression of αSMA, which contrasted with the limited expression in hMSCs and spatially discrete expression in HTM tissue. CONCLUSIONS HTM cells possess a number of important similarities with hMSCs but lack multipotency, one of the defining characteristics of stem cells. Further work is needed to explore the molecular mechanisms and functional implications underlying the phenotypic similarities.


Toxicology in Vitro | 2009

Response to chronic exposure to hexavalent chromium in human monocytes.

Vijay Krishna Raghunathan; Elizabeth M. Ellis; M. Helen Grant

Elevated circulating levels of metal ions, particularly chromium, have been measured in the blood of patients with metal hip implants, and this has lead to concerns about the long term safety of the prostheses. For example, depletion of lymphocytes has been reported in vivo in patients with metallic prostheses, and correlated with elevated chromium and cobalt concentrations in blood. However, the implications for immune function are unclear. We have assessed the in vitro responses of U937 human monocytes to chronic exposure (4 weeks) to Cr (VI) ions at concentrations which have been measured in patients with metal artificial hip implants (0.05-0.5 microM). Chronic exposure to these low clinically relevant concentrations of Cr (VI) induced a potent adaptive response with elevated glutathione-S-transferase (pi) expression and increased activities and expression of reactive oxygen scavengers, superoxide dismutases, catalase and glutathione peroxidase. Such direct toxicity of Cr ions may contribute to the effects of metal implants on lymphocyte populations in vivo.


Wound Repair and Regeneration | 2014

full-thickness Splinted Skin Wound Healing Models In Db/db And Heterozygous Mice: Implications For Wound Healing Impairment

Shin Ae Park; Leandro B. C. Teixeira; Vijay Krishna Raghunathan; Jill Covert; Richard R. Dubielzig; R. Rivkah Isseroff; Michael J. Schurr; Nicholas L. Abbott; Jonathan F. McAnulty; Christopher J. Murphy

The excisional dorsal full‐thickness skin wound model with or without splinting is widely utilized in wound healing studies using diabetic or normal mice. However, the effects of splinting on dermal wound healing have not been fully characterized, and there are limited data on the direct comparison of wound parameters in the splinted model between diabetic and normal mice. We compared full‐thickness excisional dermal wound healing in db/db and heterozygous mice by investigating the effects of splinting, semi‐occlusive dressing, and poly(ethylene glycol) treatment. Two 8‐mm full‐thickness wounds were made with or without splinting in db/db and heterozygous mice. Body weights, splint maintenance, wound contraction, wound closure, and histopathological parameters including reepithelialization, wound bed collagen deposition, and inflammation were compared between groups. Our results show that silicone splint application effectively reduced wound contraction in heterozygous and db/db mice. Splinted wounds, as opposed to nonsplinted wounds, exhibited no significant differences in wound closure between heterozygous and db/db mice. Finally, polyethylene glycol and the noncontact dressing had no significant effect on wound healing in heterozygous or db/db mice. We believe these findings will help investigators in selection of the appropriate wound model and data interpretation with fully defined parameters.

Collaboration


Dive into the Vijay Krishna Raghunathan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Russell

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernardo Yañez-Soto

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nicholas L. Abbott

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yow Ren Chang

University of California

View shared research outputs
Top Co-Authors

Avatar

M.H. Grant

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Reilly

Edward Via College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge