Vijay Pal Singh
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vijay Pal Singh.
Brain Research | 2001
Vijay Pal Singh; Naveen K. Jain; Shrinivas K. Kulkarni
Antidepressant drugs are reported to be used as co-analgesics in clinical management of migraine and neuropathic pain. The mechanism through which they alleviate pain remains unknown. The present study explores the possible mechanism of a selective serotonin reuptake inhibitor (SSRI) fluoxetine-induced antinociception in animals. Acetic acid-induced writhing, hot plate and tail-flick test were used to assess fluoxetine-induced antinociception. Fluoxetine (5-20 mg kg(-1), i.p.) produced a significant and dose-dependent antinociceptive effect against acetic acid-induced writhing in mice. Fluoxetine (20 mg kg(-1)) also exhibited antinociceptive effect in tail flick as well as hot plate assays. Further, i.c.v. administration of fluoxetine showed significant antinociception against writhing test in rats. However, fluoxetine (1 microg/10 microl/rat, i.c.v.) did not exhibit any antinociceptive effect in serotonin-depleted animals. Further, pindolol (10 mg kg(-1), i.p.) enhanced fluoxetine-induced antinociceptive effect. The antinociceptive effect of fluoxetine was sensitive to blockade by naloxone (5 mg kg(-1), i.p.) and naltrexone (5 mg kg(-1), i.p.). These data suggest that fluoxetine-induced antinociception involves both central opioid and the serotoninergic pathways.
RNA | 2014
Reema Roshan; Shruti Shridhar; Mayuresh Anant Sarangdhar; Arpita Banik; Mrinal Chawla; Manali Garg; Vijay Pal Singh; Beena Pillai
Several microRNAs have been implicated in neurogenesis, neuronal differentiation, neurodevelopment, and memory. Development of miRNA-based therapeutics, however, needs tools for effective miRNA modulation, tissue-specific delivery, and in vivo evidence of functional effects following the knockdown of miRNA. Expression of miR-29a is reduced in patients and animal models of several neurodegenerative disorders, including Alzheimers disease, Huntingtons disease, and spinocerebellar ataxias. The temporal expression pattern of miR-29b during development also correlates with its protective role in neuronal survival. Here, we report the cellular and behavioral effect of in vivo, brain-specific knockdown of miR-29. We delivered specific anti-miRNAs to the mouse brain using a neurotropic peptide, thus overcoming the blood-brain-barrier and restricting the effect of knockdown to the neuronal cells. Large regions of the hippocampus and cerebellum showed massive cell death, reiterating the role of miR-29 in neuronal survival. The mice showed characteristic features of ataxia, including reduced step length. However, the apoptotic targets of miR-29, such as Puma, Bim, Bak, or Bace1, failed to show expected levels of up-regulation in mice, following knockdown of miR-29. In contrast, another miR-29 target, voltage-dependent anion channel1 (VDAC1), was found to be induced several fold in the hippocampus, cerebellum, and cortex of mice following miRNA knockdown. Partial restoration of apoptosis was achieved by down-regulation of VDAC1 in miR-29 knockdown cells. Our study suggests that regulation of VDAC1 expression by miR-29 is an important determinant of neuronal cell survival in the brain. Loss of miR-29 results in dysregulation of VDAC1, neuronal cell death, and an ataxic phenotype.
Scientific Reports | 2013
Ulaganathan Mabalirajan; Rakhshinda Rehman; Tanveer Ahmad; Sarvesh Kumar; Suchita Singh; Geeta Devi Leishangthem; Jyotirmoi Aich; Manish Kumar; Kritika Khanna; Vijay Pal Singh; Amit K. Dinda; Shyam Biswal; Anurag Agrawal; Balaram Ghosh
Airway epithelial injury is the hallmark of various respiratory diseases, but its mechanisms remain poorly understood. While 13-S-hydroxyoctadecadienoic acid (13-S-HODE) is produced in high concentration during mitochondrial degradation in reticulocytes little is known about its role in asthma pathogenesis. Here, we show that extracellular 13-S-HODE induces mitochondrial dysfunction and airway epithelial apoptosis. This is associated with features of severe airway obstruction, lung remodeling, increase in epithelial stress related proinflammatory cytokines and drastic airway neutrophilia in mouse. Further, 13-S-HODE induced features are attenuated by inhibiting Transient Receptor Potential Cation Channel, Vanilloid-type 1 (TRPV1) both in mouse model and human bronchial epithelial cells. These findings are relevant to human asthma, as 13-S-HODE levels are increased in human asthmatic airways. Blocking of 13-S-HODE activity or disruption of TRPV1 activity attenuated airway injury and asthma mimicking features in murine allergic airway inflammation. These findings indicate that 13-S-HODE induces mitochondrial dysfunction and airway epithelial injury.
Pharmacology | 2004
Chandrashekhar S. Patil; Vijay Pal Singh; Sukhjeet Singh; Shrinivas K. Kulkarni
Diabetic neuropathy is one of the most frequent peripheral neuropathies associated with hyperalgesia and hyperesthesia. Besides alteration in the levels of neurotransmitter, alteration in the neuronal nitric oxide synthase (nNOS) is a key factor in the pathogenesis of diabetic neuropathy. The present study was aimed at evaluating the role of PDE-5 inhibitor on nociception in streptozotocin-induced diabetes in animal models of nociception (writhing assay in mice and paw hyperalgesia test in rats). Diabetic animals showed a significant decrease in pain threshold as compared to non-diabetic animals in both tests, indicating diabetes induced hyperalgesia in mice and rats. The PDE-5 inhibitor, sildenafil, significantly increased the pain threshold in both diabetic and non-diabetic animals. However, L-NAME, a non-specific NOS inhibitor and methylene blue (MB), a guanylate cyclase inhibitor blocked the antinociceptive effect. The per se administration of L-NAME or MB augmented the hyperalgesic response in diabetic animals with little or no effect in non-diabetic animals, indicating the alteration of NO-cGMP pathway in diabetes. The results in the present study demonstrate that the decreased nNOS-cGMP system may play a crucial role in the pathogenesis of diabetic neuropathy.
Angewandte Chemie | 2016
Shailesh Kumar; Jiajie Yan; Jia-fei Poon; Vijay Pal Singh; Xi Lu; Marjam Karlsson Ott; Lars Engman; Sangit Kumar
Regenerable, multifunctional ebselenol antioxidants were prepared that could quench peroxyl radicals more efficiently than α-tocopherol. These compounds act as better mimics of the glutathione peroxidase enzymes than ebselen. Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in human mononuclear cells was considerably decreased upon exposure to the organoselenium compounds. At a concentration of 25u2005μm, the ebselenol derivatives showed minimal toxicity in pre-osteoblast MC3T3u2005cells.
Chemistry: A European Journal | 2015
Jia-fei Poon; Vijay Pal Singh; Jiajie Yan; Lars Engman
To improve the radical-trapping capacity of the natural antioxidants, alkylthio-, alkylseleno-, and alkyltelluro groups were introduced into all vacant aromatic positions in β-, γ- and δ-tocopherol. Reaction of the tocopherols with electrophilic chalcogen reagents generated by persulfate oxidation of dialkyl dichalcogenides provided convenient but low-yielding access to many sulfur and selenium derivatives, but failed in the case of tellurium. An approach based on lithiation of the appropriate bromo-tocopherol, insertion of chalcogen into the carbon-lithium bond, air-oxidation to a dichalcogenide, and final borohydride reduction/alkylation turned out to be generally applicable to the synthesis of all chalcogen derivatives. Whereas alkylthio- and alkylseleno analogues were generally poorer quenchers of lipid peroxyl radicals than the corresponding parents, all tellurium compounds showed a substantially improved radical-trapping activity. Introduction of alkyltelluro groups into the tocopherol scaffold also caused a dramatic increase in the regenerability of the antioxidant. In a two-phase lipid peroxidation system containing N-acetylcysteine as a water-soluble co-antioxidant the inhibition time was up to six-fold higher than that recorded for the natural antioxidants.
PLOS ONE | 2015
Vijay Pal Singh; Rangoli Aggarwal; Suchita Singh; Arpita Banik; Tanveer Ahmad; Bijay Ranjan Patnaik; Giridharan Nappanveettil; Kunal Singh; Madan Lal Aggarwal; Balaram Ghosh; Anurag Agrawal
Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR). However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS). Altered L-arginine and nitric oxide (NO) metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR) could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.
Scientific Reports | 2015
Pankaj Kumar Arora; Alok Srivastava; Vijay Pal Singh
A 4-chloro-3-nitrophenol (4C3NP)-mineralizing bacterium, Pseudomonas sp. JHN was isolated from a waste water sample collected from a chemically-contaminated area, India by an enrichment method. Pseudomonas sp. JHN utilized 4C3NP as a sole carbon and energy source and degraded it with the release of stoichiometric amounts of chloride and nitrite ions. Gas chromatography and gas chromatography-mass spectrometry detected 4-chlororesorcinol as a major metabolite of the 4C3NP degradation pathway. Inhibition studies using 2,2′-dipyridyl showed that 4-chlororesorcinol is a terminal aromatic compound in the degradation pathway of 4C3NP. The activity for 4C3NP-monooxygenase was detected in the crude extracts of the 4C3NP-induced JHN cells that confirmed the formation of 4-chlororesorcinol from 4C3NP. The capillary assay showed that Pseudomonas sp. JHN exhibited chemotaxis toward 4C3NP. The bioremediation capability of Pseudomonas sp. JHN was monitored to carry out the microcosm experiments using sterile and non-sterile soils spiked with 4C3NP. Strain JHN degraded 4C3NP in sterile and non-sterile soil with same degradation rates. This is the first report of (i) bacterial degradation and bioremediation of 4C3NP, (ii) formation of 4-chlororesorcinol in the degradation pathway of 4C3NP, (iii) bacterial chemotaxis toward 4C3NP.
Chemistry: A European Journal | 2014
Vijay Pal Singh; Jia-fei Poon; Ray J. Butcher; Lars Engman
One of the vitamin B6 vitamers, pyridoxine, was modified to incorporate selenium in various oxidation states in place of the methyl group in position 2. Such compounds were conveniently accessed by treatment of bis-4,5-(carboethoxy)-2-iodo-3-pyridinol with disodium diselenide and LiAlH4 -reduction. After work-up, selone 7 was isolated in good yield as an air-stable crystalline material. Hydrogen bonding to the neighboring hydroxyl group, as revealed by the short intramolecular Se⋅⋅⋅H distance in the crystal structure is likely to provide extra stabilization to the compound. Computational studies showed that selone 7 is more stable than the corresponding selenol tautomer by 12.2u2005kcalu2009mol(-1) . Hydrogen peroxide oxidation of the selone 7 afforded diselenide 12, and, on further oxidation, seleninic acid 13. Treatment of the seleninic acid with thiophenol provided an isolable selenosulfide 14. The glutathione peroxidase-like properties of the pyridoxine-derived compounds were assessed by using the coupled reductase method. Seleninic acid 13 was found to be twofold more active than ebselen. The chain-breaking capacity of the pyridoxine compounds were studied in a water/chlorobenzene membrane model containing linoleic acid as an oxidizable substrate and N-acetylcysteine as a thiol reducing agent. Diselenide 15 could match α-tocopherol when it comes to reactivity towards peroxyl radicals and inhibition time.
Pharmacology, Biochemistry and Behavior | 2005
Vijay Pal Singh; Chandrashekhar S. Patil; Shrinivas K. Kulkarni
Pain is commonly associated with inflammation. Several mediators including prostaglandins have been implicated in pain and inflammation. However, the recent reports indicated the role of leukotrienes as signaling molecules in pain. The present study was aimed to evaluate the effect of 5-LOX inhibitor, zileuton in nociceptive paradigms including inflammatory pain. Acetic acid-induced writhing, tail flick and hot plate tests to assess pain response were used. The effect on carrageenan-induced mechanical hyperalgesia, and acetic acid-induced vascular permeability was also determined. Zileuton (ED50=31.81 mg/kg p.o.), zafirlukast (ED50=6.19 mg/kg p.o.), montelukast (ED50=7.17 mg/kg p.o.) inhibited acetic acid-induced writhing in mice. Further, zileuton and ZK 158252, leukotriene B4 receptor antagonist did not alter basal response against tail flick and hot plate assays. Acetic acid-induced vascular permeability was significantly inhibited by zileuton. Oral administration of zileuton showed efficacy against carrageenan-induced mechanical hyperalgesia and also reversed histological changes in paw biopsies. These data suggest that zileuton, a 5-LOX inhibitor, exhibited antinociceptive effect in paradigms of inflammatory pain.