Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vijayalakshmi Chelliah is active.

Publication


Featured researches published by Vijayalakshmi Chelliah.


BMC Systems Biology | 2010

BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models

Chen Li; Marco Donizelli; Nicolas Rodriguez; Harish Dharuri; Lukas Endler; Vijayalakshmi Chelliah; Lu Li; Enuo He; Arnaud Henry; Melanie I. Stefan; Jacky L. Snoep; Michael Hucka; Nicolas Le Novère; Camille Laibe

BackgroundQuantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse. Ideally, the models stored in these repositories should be extensively tested and encoded in community-supported and standardised formats. In addition, the models and their components should be cross-referenced with other resources in order to allow their unambiguous identification.DescriptionBioModels Database http://www.ebi.ac.uk/biomodels/ is aimed at addressing exactly these needs. It is a freely-accessible online resource for storing, viewing, retrieving, and analysing published, peer-reviewed quantitative models of biochemical and cellular systems. The structure and behaviour of each simulation model distributed by BioModels Database are thoroughly checked; in addition, model elements are annotated with terms from controlled vocabularies as well as linked to relevant data resources. Models can be examined online or downloaded in various formats. Reaction network diagrams generated from the models are also available in several formats. BioModels Database also provides features such as online simulation and the extraction of components from large scale models into smaller submodels. Finally, the system provides a range of web services that external software systems can use to access up-to-date data from the database.ConclusionsBioModels Database has become a recognised reference resource for systems biology. It is being used by the community in a variety of ways; for example, it is used to benchmark different simulation systems, and to study the clustering of models based upon their annotations. Model deposition to the database today is advised by several publishers of scientific journals. The models in BioModels Database are freely distributed and reusable; the underlying software infrastructure is also available from SourceForge https://sourceforge.net/projects/biomodels/ under the GNU General Public License.


Nucleic Acids Research | 2015

BioModels: ten-year anniversary

Vijayalakshmi Chelliah; Nick Juty; Ishan Ajmera; Raza Ali; Marine Dumousseau; Mihai Glont; Michael Hucka; Gaël Jalowicki; Sarah M. Keating; Vincent Knight-Schrijver; Audald Lloret-Villas; Kedar Nath Natarajan; Jean-Baptiste Pettit; Nicolas Rodriguez; Michael Schubert; Sarala M. Wimalaratne; Yangyang Zhao; Henning Hermjakob; Nicolas Le Novère; Camille Laibe

BioModels (http://www.ebi.ac.uk/biomodels/) is a repository of mathematical models of biological processes. A large set of models is curated to verify both correspondence to the biological process that the model seeks to represent, and reproducibility of the simulation results as described in the corresponding peer-reviewed publication. Many models submitted to the database are annotated, cross-referencing its components to external resources such as database records, and terms from controlled vocabularies and ontologies. BioModels comprises two main branches: one is composed of models derived from literature, while the second is generated through automated processes. BioModels currently hosts over 1200 models derived directly from the literature, as well as in excess of 140 000 models automatically generated from pathway resources. This represents an approximate 60-fold growth for literature-based model numbers alone, since BioModels’ first release a decade ago. This article describes updates to the resource over this period, which include changes to the user interface, the annotation profiles of models in the curation pipeline, major infrastructure changes, ability to perform online simulations and the availability of model content in Linked Data form. We also outline planned improvements to cope with a diverse array of new challenges.


PLOS Computational Biology | 2011

Minimum Information About a Simulation Experiment (MIASE).

Dagmar Waltemath; Richard Adams; Daniel A. Beard; Frank Bergmann; Upinder S. Bhalla; Randall Britten; Vijayalakshmi Chelliah; Mike T. Cooling; Jonathan Cooper; Edmund J. Crampin; Alan Garny; Stefan Hoops; Michael Hucka; Peter Hunter; Edda Klipp; Camille Laibe; Andrew K. Miller; Ion I. Moraru; David Nickerson; Poul M. F. Nielsen; Macha Nikolski; Sven Sahle; Herbert M. Sauro; Henning Schmidt; Jacky L. Snoep; Dominic P. Tolle; Olaf Wolkenhauer; Nicolas Le Novère

Reproducibility of experiments is a basic requirement for science. Minimum Information (MI) guidelines have proved a helpful means of enabling reuse of existing work in modern biology. The Minimum Information Required in the Annotation of Models (MIRIAM) guidelines promote the exchange and reuse of biochemical computational models. However, information about a model alone is not sufficient to enable its efficient reuse in a computational setting. Advanced numerical algorithms and complex modeling workflows used in modern computational biology make reproduction of simulations difficult. It is therefore essential to define the core information necessary to perform simulations of those models. The Minimum Information About a Simulation Experiment (MIASE, Glossary in Box 1) describes the minimal set of information that must be provided to make the description of a simulation experiment available to others. It includes the list of models to use and their modifications, all the simulation procedures to apply and in which order, the processing of the raw numerical results, and the description of the final output. MIASE allows for the reproduction of any simulation experiment. The provision of this information, along with a set of required models, guarantees that the simulation experiment represents the intention of the original authors. Following MIASE guidelines will thus improve the quality of scientific reporting, and will also allow collaborative, more distributed efforts in computational modeling and simulation of biological processes.


Methods of Molecular Biology | 2013

BioModels Database: A Repository of Mathematical Models of Biological Processes

Vijayalakshmi Chelliah; Camille Laibe; Nicolas Le Novère

BioModels Database is a public online resource that allows storing and sharing of published, peer-reviewed quantitative, dynamic models of biological processes. The model components and behaviour are thoroughly checked to correspond the original publication and manually curated to ensure reliability. Furthermore, the model elements are annotated with terms from controlled vocabularies as well as linked to relevant external data resources. This greatly helps in model interpretation and reuse. Models are stored in SBML format, accepted in SBML and CellML formats, and are available for download in various other common formats such as BioPAX, Octave, SciLab, VCML, XPP and PDF, in addition to SBML. The reaction network diagram of the models is also available in several formats. BioModels Database features a search engine, which provides simple and more advanced searches. Features such as online simulation and creation of smaller models (submodels) from the selected model elements of a larger one are provided. BioModels Database can be accessed both via a web interface and programmatically via web services. New models are available in BioModels Database at regular releases, about every 4 months.


CPT: Pharmacometrics & Systems Pharmacology | 2013

The impact of mathematical modeling on the understanding of diabetes and related complications

Ishan Ajmera; Maciej J. Swat; Camille Laibe; N. Le Novere; Vijayalakshmi Chelliah

Diabetes is a chronic and complex multifactorial disease caused by persistent hyperglycemia and for which underlying pathogenesis is still not completely understood. The mathematical modeling of glucose homeostasis, diabetic condition, and its associated complications is rapidly growing and provides new insights into the underlying mechanisms involved. Here, we discuss contributions to the diabetes modeling field over the past five decades, highlighting the areas where more focused research is required.


Journal of the Royal Society Interface | 2009

Designing and encoding models for synthetic biology

Lukas Endler; Nicolas Rodriguez; Nick Juty; Vijayalakshmi Chelliah; Camille Laibe; Chen Li; Nicolas Le Novère

A key component of any synthetic biology effort is the use of quantitative models. These models and their corresponding simulations allow optimization of a system design, as well as guiding their subsequent analysis. Once a domain mostly reserved for experts, dynamical modelling of gene regulatory and reaction networks has been an area of growth over the last decade. There has been a concomitant increase in the number of software tools and standards, thereby facilitating model exchange and reuse. We give here an overview of the model creation and analysis processes as well as some software tools in common use. Using markup language to encode the model and associated annotation, we describe the mining of components, their integration in relational models, formularization and parametrization. Evaluation of simulation results and validation of the model close the systems biology ‘loop’.


IEEE Transactions on Biomedical Engineering | 2016

Toward Community Standards and Software for Whole-Cell Modeling

Dagmar Waltemath; Jonathan R. Karr; Frank Bergmann; Vijayalakshmi Chelliah; Michael Hucka; Marcus Krantz; Wolfram Liebermeister; Pedro Mendes; Chris J. Myers; Pınar Pir; Begum Alaybeyoglu; Naveen K. Aranganathan; Kambiz Baghalian; Arne T. Bittig; Paulo E Pinto Burke; Matteo Cantarelli; Yin Hoon Chew; Rafael S. Costa; Joseph Cursons; Tobias Czauderna; Arthur P. Goldberg; Harold F. Gómez; Jens Hahn; Tuure Hameri; Daniel Federico Hernandez Gardiol; Denis Kazakiewicz; Ilya Kiselev; Vincent Knight-Schrijver; Christian Knüpfer; Matthias König

Objective: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. Methods: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. Results: Our analysis revealed several challenges to representing WC models using the current standards. Conclusion: We, therefore, propose several new WC modeling standards, software, and databases. Significance: We anticipate that these new standards and software will enable more comprehensive models.


Computational and structural biotechnology journal | 2016

The promises of quantitative systems pharmacology modelling for drug development

Vincent Knight-Schrijver; Vijayalakshmi Chelliah; L. Cucurull-Sanchez; N. Le Novere

Recent growth in annual new therapeutic entity (NTE) approvals by the U.S. Food and Drug Administration (FDA) suggests a positive trend in current research and development (R&D) output. Prior to this, the cost of each NTE was considered to be rising exponentially, with compound failure occurring mainly in clinical phases. Quantitative systems pharmacology (QSP) modelling, as an additional tool in the drug discovery arsenal, aims to further reduce NTE costs and improve drug development success. Through in silico mathematical modelling, QSP can simulate drug activity as perturbations in biological systems and thus understand the fundamental interactions which drive disease pathology, compound pharmacology and patient response. Here we review QSP, pharmacometrics and systems biology models with respect to the diseases covered as well as their clinical relevance and applications. Overall, the majority of modelling focus was aligned with the priority of drug-discovery and clinical trials. However, a few clinically important disease categories, such as Immune System Diseases and Respiratory Tract Diseases, were poorly covered by computational models. This suggests a possible disconnect between clinical and modelling agendas. As a standard element of the drug discovery pipeline the uptake of QSP might help to increase the efficiency of drug development across all therapeutic indications.


CPT: Pharmacometrics & Systems Pharmacology | 2017

The Impact of Mathematical Modeling in Understanding the Mechanisms Underlying Neurodegeneration: Evolving Dimensions and Future Directions

Audald Lloret-Villas; Tm Varusai; Nick Juty; Camille Laibe; N. Le Novere; Henning Hermjakob; Vijayalakshmi Chelliah

Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the progressive dysfunction and loss of neurons. Here, we distil and discuss the current state of modeling in the area of neurodegeneration, and objectively compare the gaps between existing clinical knowledge and the mechanistic understanding of the major pathological processes implicated in neurodegenerative disorders. We also discuss new directions in the field of neurodegeneration that hold potential for furthering therapeutic interventions and strategies.


data integration in the life sciences | 2009

Data Integration and Semantic Enrichment of Systems Biology Models and Simulations

Vijayalakshmi Chelliah; Lukas Endler; Nick Juty; Camille Laibe; Chen Li; Nicolas Rodriguez; Nicolas Le Novère

The rise of Systems Biology approaches, in conjunction with the availability of numerous powerful and user-friendly modeling environments, brought computational models out of the dusty closets of theoreticians to the forefront of research in biology. Those models are becoming larger, more complex and more realistic. As any other type of data in life sciences, models have to be stored, exchanged and re-used. This was made possible by the development of a series of standards, that, when used in conjunction, can cover the whole life-cycle of a model, including the specification of its structure and syntax, the simulations to be run, and the description of its behaviour and resulting numerical output. We will review those standards, well-accepted or still under development, including the Minimal requirements (MIRIAM, MIASE), the description formats (SBML, SED-ML, SBRML) and the associated ontologies (SBO, KiSAO, TEDDY). We will show how their use by the community, through a rich toolkit of complementary software, can permit to leverage on everyones efforts, to integrate models and simulations with other types of biological knowledge, and eventually lead to the fulfillment of one of Systems Biologys tenets of collaboration between biology, mathematics and computing science.

Collaboration


Dive into the Vijayalakshmi Chelliah's collaboration.

Top Co-Authors

Avatar

Camille Laibe

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Juty

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Nicolas Rodriguez

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Hucka

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas Endler

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Li

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ishan Ajmera

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge