Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viji Nair is active.

Publication


Featured researches published by Viji Nair.


Science Translational Medicine | 2015

Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker

Wenjun Ju; Viji Nair; Shahaan Smith; Li Zhu; Kerby Shedden; Peter X.-K. Song; Laura H. Mariani; Felix Eichinger; Celine C. Berthier; Ann Randolph; Jennifer Y. Lai; Yan Zhou; Jennifer Hawkins; Markus Bitzer; Matthew G. Sampson; Martina Thier; Corinne Solier; Gonzalo Duran-Pacheco; Guillemette Duchateau-Nguyen; Laurent Essioux; Brigitte Schott; Ivan Formentini; Maria Chiara Magnone; Maria Bobadilla; Clemens D. Cohen; Serena M. Bagnasco; Laura Barisoni; Jicheng Lv; Hong Zhang; Haiyan Wang

Renal and urinary EGF can serve as biomarkers for prediction of outcomes in chronic kidney disease. Urine marker to the rescue Chronic kidney disease is a common medical problem worldwide, but it is difficult to predict which patients are more likely to progress to end-stage disease and need aggressive management. Ju et al. have now drawn on four independent cohorts totaling hundreds of patients from around the world to identify the expression of epidermal growth factor (EGF) in the kidneys as a marker of kidney disease progression. Moreover, the authors demonstrated that the amount of EGF in the urine is just as useful, providing a biomarker that can be easily tracked over time without requiring invasive biopsies. Chronic kidney disease (CKD) affects 8 to 16% people worldwide, with an increasing incidence and prevalence of end-stage kidney disease (ESKD). The effective management of CKD is confounded by the inability to identify patients at high risk of progression while in early stages of CKD. To address this challenge, a renal biopsy transcriptome-driven approach was applied to develop noninvasive prognostic biomarkers for CKD progression. Expression of intrarenal transcripts was correlated with the baseline estimated glomerular filtration rate (eGFR) in 261 patients. Proteins encoded by eGFR-associated transcripts were tested in urine for association with renal tissue injury and baseline eGFR. The ability to predict CKD progression, defined as the composite of ESKD or 40% reduction of baseline eGFR, was then determined in three independent CKD cohorts. A panel of intrarenal transcripts, including epidermal growth factor (EGF), a tubule-specific protein critical for cell differentiation and regeneration, predicted eGFR. The amount of EGF protein in urine (uEGF) showed significant correlation (P < 0.001) with intrarenal EGF mRNA, interstitial fibrosis/tubular atrophy, eGFR, and rate of eGFR loss. Prediction of the composite renal end point by age, gender, eGFR, and albuminuria was significantly (P < 0.001) improved by addition of uEGF, with an increase of the C-statistic from 0.75 to 0.87. Outcome predictions were replicated in two independent CKD cohorts. Our approach identified uEGF as an independent risk predictor of CKD progression. Addition of uEGF to standard clinical parameters improved the prediction of disease events in diverse CKD populations with a wide spectrum of causes and stages.


Diabetes | 2013

Identification of Cross-Species Shared Transcriptional Networks of Diabetic Nephropathy in Human and Mouse Glomeruli

Jeffrey B. Hodgin; Viji Nair; Hongyu Zhang; Ann Randolph; Raymond C. Harris; Robert G. Nelson; E. Jennifer Weil; James D. Cavalcoli; Jignesh M. Patel; Frank C. Brosius; Matthias Kretzler

Murine models are valuable instruments in defining the pathogenesis of diabetic nephropathy (DN), but they only partially recapitulate disease manifestations of human DN, limiting their utility. To define the molecular similarities and differences between human and murine DN, we performed a cross-species comparison of glomerular transcriptional networks. Glomerular gene expression was profiled in patients with early type 2 DN and in three mouse models (streptozotocin DBA/2, C57BLKS db/db, and eNOS-deficient C57BLKS db/db mice). Species-specific transcriptional networks were generated and compared with a novel network-matching algorithm. Three shared human–mouse cross-species glomerular transcriptional networks containing 143 (Human-DBA STZ), 97 (Human-BKS db/db), and 162 (Human-BKS eNOS−/− db/db) gene nodes were generated. Shared nodes across all networks reflected established pathogenic mechanisms of diabetes complications, such as elements of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and vascular endothelial growth factor receptor (VEGFR) signaling pathways. In addition, novel pathways not previously associated with DN and cross-species gene nodes and pathways unique to each of the human–mouse networks were discovered. The human–mouse shared glomerular transcriptional networks will assist DN researchers in selecting mouse models most relevant to the human disease process of interest. Moreover, they will allow identification of new pathways shared between mice and humans.


Journal of The American Society of Nephrology | 2009

The MIF Receptor CD74 in Diabetic Podocyte Injury

Maria Dolores Sanchez-Niño; Ana Belen Sanz; Pekka Ihalmo; Markus Lassila; Harry Holthöfer; Sergio Mezzano; Claudio Aros; Per-Henrik Groop; Moin A. Saleem; Peter W. Mathieson; Robert Langham; Matthias Kretzler; Viji Nair; Kevin V. Lemley; Robert G. Nelson; Eero Mervaala; Deborah Mattinzoli; Maria Pia Rastaldi; Marta Ruiz-Ortega; José Luis Martín-Ventura; Jesús Egido; Alberto Ortiz

Although metabolic derangement plays a central role in diabetic nephropathy, a better understanding of secondary mediators of injury may lead to new therapeutic strategies. Expression of macrophage migration inhibitory factor (MIF) is increased in experimental diabetic nephropathy, and increased tubulointerstitial mRNA expression of its receptor, CD74, has been observed in human diabetic nephropathy. Whether CD74 transduces MIF signals in podocytes, however, is unknown. Here, we found glomerular and tubulointerstitial CD74 mRNA expression to be increased in Pima Indians with type 2 diabetes and diabetic nephropathy. Immunohistochemistry confirmed the increased glomerular and tubular expression of CD74 in clinical and experimental diabetic nephropathy and localized glomerular CD74 to podocytes. In cultured human podocytes, CD74 was expressed at the cell surface, was upregulated by high concentrations of glucose and TNF-alpha, and was activated by MIF, leading to phosphorylation of extracellular signal-regulated kinase 1/2 and p38. High glucose also induced CD74 expression in a human proximal tubule cell line (HK2). In addition, MIF induced the expression of the inflammatory mediators TRAIL and monocyte chemoattractant protein 1 in podocytes and HK2 cells in a p38-dependent manner. These data suggest that CD74 acts as a receptor for MIF in podocytes and may play a role in the pathogenesis of diabetic nephropathy.


Journal of Immunology | 2012

Cross-Species Transcriptional Network Analysis Defines Shared Inflammatory Responses in Murine and Human Lupus Nephritis

Celine C. Berthier; Ramalingam Bethunaickan; Tania Gonzalez-Rivera; Viji Nair; Meera Ramanujam; Weijia Zhang; Erwin P. Bottinger; Stephan Segerer; Maja T. Lindenmeyer; Clemens D. Cohen; Anne Davidson; Matthias Kretzler

Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these preclinical models. In this study, we used an unbiased transcriptional network approach to define, in molecular terms, similarities and differences among three lupus models and human LN. Genome-wide gene-expression networks were generated using natural language processing and automated promoter analysis and compared across species via suboptimal graph matching. The three murine models and human LN share both common and unique features. The 20 commonly shared network nodes reflect the key pathologic processes of immune cell infiltration/activation, endothelial cell activation/injury, and tissue remodeling/fibrosis, with macrophage/dendritic cell activation as a dominant cross-species shared transcriptional pathway. The unique nodes reflect differences in numbers and types of infiltrating cells and degree of remodeling among the three mouse strains. To define mononuclear phagocyte-derived pathways in human LN, gene sets activated in isolated NZB/W renal mononuclear cells were compared with human LN kidney profiles. A tissue compartment-specific macrophage-activation pattern was seen, with NF-κB1 and PPARγ as major regulatory nodes in the tubulointerstitial and glomerular networks, respectively. Our study defines which pathologic processes in murine models of LN recapitulate the key transcriptional processes active in human LN and suggests that there are functional differences between mononuclear phagocytes infiltrating different renal microenvironments.


American Journal of Pathology | 2010

A Molecular Profile of Focal Segmental Glomerulosclerosis from Formalin-Fixed, Paraffin-Embedded Tissue

Jeffrey B. Hodgin; Alain C. Borczuk; Samih H. Nasr; Glen S. Markowitz; Viji Nair; Sebastian Martini; Felix Eichinger; Courtenay Vining; Celine C. Berthier; Matthias Kretzler

Focal segmental glomerulosclerosis (FSGS) is a common form of idiopathic nephrotic syndrome defined by the characteristic lesions of focal glomerular sclerosis and foot process effacement; however, its etiology and pathogenesis are unknown. We used mRNA isolated from laser-captured glomeruli from archived formalin-fixed, paraffin-embedded renal biopsies, until recently considered an unsuitable source of mRNA for microarray analysis, to investigate the glomerular gene expression profiles of patients with primary classic FSGS, collapsing FSGS (COLL), minimal change disease (MCD), and normal controls (Normal). Amplified mRNA was hybridized to an Affymetrix Human X3P array. Unsupervised (unbiased) hierarchical clustering revealed two distinct clusters delineating FSGS and COLL from Normal and MCD. Class comparison analysis of FSGS + COLL combined versus Normal + MCD revealed 316 significantly differentially regulated genes (134 up-regulated, 182 down-regulated). Among the differentially regulated genes were those known to be part of the slit diaphragm junctional complex and those previously described in the dysregulated podocyte phenotype. Analysis based on Gene Ontology categories revealed overrepresented biological processes of development, differentiation and morphogenesis, cell motility and migration, cytoskeleton organization, and signal transduction. Transcription factors associated with developmental processes were heavily overrepresented, indicating the importance of reactivation of developmental programs in the pathogenesis of FSGS. Our findings reveal novel insights into the molecular pathogenesis of glomerular injury and structural degeneration in FSGS.


Genome Research | 2013

Defining cell-type specificity at the transcriptional level in human disease

Wenjun Ju; Casey S. Greene; Felix Eichinger; Viji Nair; Jeffrey B. Hodgin; Markus Bitzer; Young Suk Lee; Qian Zhu; Masami Kehata; Min Li; Song Jiang; Maria Pia Rastaldi; Clemens D. Cohen; Olga G. Troyanskaya; Matthias Kretzler

Cell-lineage-specific transcripts are essential for differentiated tissue function, implicated in hereditary organ failure, and mediate acquired chronic diseases. However, experimental identification of cell-lineage-specific genes in a genome-scale manner is infeasible for most solid human tissues. We developed the first genome-scale method to identify genes with cell-lineage-specific expression, even in lineages not separable by experimental microdissection. Our machine-learning-based approach leverages high-throughput data from tissue homogenates in a novel iterative statistical framework. We applied this method to chronic kidney disease and identified transcripts specific to podocytes, key cells in the glomerular filter responsible for hereditary and most acquired glomerular kidney disease. In a systematic evaluation of our predictions by immunohistochemistry, our in silico approach was significantly more accurate (65% accuracy in human) than predictions based on direct measurement of in vivo fluorescence-tagged murine podocytes (23%). Our method identified genes implicated as causal in hereditary glomerular disease and involved in molecular pathways of acquired and chronic renal diseases. Furthermore, based on expression analysis of human kidney disease biopsies, we demonstrated that expression of the podocyte genes identified by our approach is significantly related to the degree of renal impairment in patients. Our approach is broadly applicable to define lineage specificity in both cell physiology and human disease contexts. We provide a user-friendly website that enables researchers to apply this method to any cell-lineage or tissue of interest. Identified cell-lineage-specific transcripts are expected to play essential tissue-specific roles in organogenesis and disease and can provide starting points for the development of organ-specific diagnostics and therapies.


Journal of The American Society of Nephrology | 2015

MicroRNA-21 in Glomerular Injury

Jennifer Y. Lai; Jinghui Luo; Christopher O’Connor; Xiaohong Jing; Viji Nair; Wenjun Ju; Ann Randolph; Iddo Z. Ben-Dov; Regina N. Matar; Daniel Briskin; Jiri Zavadil; Robert G. Nelson; Thomas Tuschl; Frank C. Brosius; Matthias Kretzler; Markus Bitzer

TGF-β(1) is a pleotropic growth factor that mediates glomerulosclerosis and podocyte apoptosis, hallmarks of glomerular diseases. The expression of microRNA-21 (miR-21) is regulated by TGF-β(1), and miR-21 inhibits apoptosis in cancer cells. TGF-β(1)-transgenic mice exhibit accelerated podocyte loss and glomerulosclerosis. We determined that miR-21 expression increases rapidly in cultured murine podocytes after exposure to TGF-β(1) and is higher in kidneys of TGF-β(1)-transgenic mice than wild-type mice. miR-21-deficient TGF-β(1)-transgenic mice showed increased proteinuria and glomerular extracellular matrix deposition and fewer podocytes per glomerular tuft compared with miR-21 wild-type TGF-β(1)-transgenic littermates. Similarly, miR-21 expression was increased in streptozotocin-induced diabetic mice, and loss of miR-21 in these mice was associated with increased albuminuria, podocyte depletion, and mesangial expansion. In cultured podocytes, inhibition of miR-21 was accompanied by increases in the rate of cell death, TGF-β/Smad3-signaling activity, and expression of known proapoptotic miR-21 target genes p53, Pdcd4, Smad7, Tgfbr2, and Timp3. In American-Indian patients with diabetic nephropathy (n=48), albumin-to-creatinine ratio was positively associated with miR-21 expression in glomerular fractions (r=0.6; P<0.001) but not tubulointerstitial fractions (P=0.80). These findings suggest that miR-21 ameliorates TGF-β(1) and hyperglycemia-induced glomerular injury through repression of proapoptotic signals, thereby inhibiting podocyte loss. This finding is in contrast to observations in murine models of tubulointerstitial kidney injury but consistent with findings in cancer models. The aggravation of glomerular disease in miR-21-deficient mice and the positive association with albumin-to-creatinine ratio in patients with diabetic nephropathy support miR-21 as a feedback inhibitor of TGF-β signaling and functions.


Journal of The American Society of Nephrology | 2010

The Ubiquitin-Like Protein FAT10 Mediates NF-κB Activation

Pengfei Gong; Allon Canaan; Bin Wang; Jeremy S. Leventhal; Alexandra Snyder; Viji Nair; Clemens D. Cohen; Matthias Kretzler; Sherman M. Weissman; Michael J. Ross

NF-kappaB is a central mediator of innate immunity and contributes to the pathogenesis of several renal diseases. FAT10 is a TNF-alpha-inducible ubiquitin-like protein with a putative role in immune response, but whether FAT10 participates in TNF-alpha-induced NF-kappaB activation is unknown. Here, using renal tubular epithelial cells (RTECs) derived from FAT10(-/-) and FAT10(+/+) mice, we observed that FAT10 deficiency abrogated TNF-alpha-induced NF-kappaB activation and reduced the induction of NF-kappaB-regulated genes. Despite normal IkBalpha degradation and polyubiquitination, FAT10 deficiency impaired TNF-alpha-induced IkBalpha degradation and nuclear translocation of p65 in RTECs, suggesting defective proteasomal degradation of polyubiquitinated IkBalpha. In addition, FAT10 deficiency reduced the expression of the proteasomal subunit low molecular mass polypeptide 2 (LMP2). Transduction of FAT10(-/-) RTECs with FAT10 restored LMP2 expression, TNF-alpha-induced IkBalpha degradation, p65 nuclear translocation, and NF-kappaB activation. Furthermore, LMP2 transfection restored IkBalpha degradation in FAT10(-/-) RTECs. In humans, common types of chronic kidney disease associated with tubulointerstitial upregulation of FAT10. These data suggest that FAT10 mediates NF-kappaB activation and may promote tubulointerstitial inflammation in chronic kidney diseases.


Journal of The American Society of Nephrology | 2010

BASP1 Promotes Apoptosis in Diabetic Nephropathy

Maria Dolores Sanchez-Niño; Ana Belen Sanz; Corina Lorz; Andrea Gnirke; Maria Pia Rastaldi; Viji Nair; Jesús Egido; Marta Ruiz-Ortega; Matthias Kretzler; Alberto Ortiz

Apoptosis contributes to the development of diabetic nephropathy (DN), but the mechanisms that lead to diabetes-induced cell death are not fully understood. Here, we combined a functional genomics screen for cDNAs that induce apoptosis in vitro with transcriptional profiling of renal biopsies from patients with DN. Twelve of the 138 full-length cDNAs that induced cell death in human embryonic kidney cells matched upregulated mRNA transcripts in tissue from human DN. Confirmatory screens identified induction of BASP1 in tubular cross sections of human DN tissue. In vitro, apoptosis-inducing conditions such as serum deprivation, high concentrations of glucose, and proinflammatory cytokines increased BASP1 mRNA and protein in human tubular epithelial cells. In normal cells, BASP1 localized to the cytoplasm, but in apoptotic cells, it colocalized with actin in the periphery. Overexpression of BASP1 induced cell death with features of apoptosis; conversely, small interfering RNA (siRNA)-mediated knockdown of BASP1 protected tubular cells from apoptosis. Supporting possible involvement of BASP1 in renal disease other than DN, we also observed significant upregulation of renal BASP1 in spontaneously hypertensive rats and a trend toward increased tubulointerstitial BASP1 mRNA in human hypertensive nephropathy. In summary, a combined functional genomics approach identified BASP1 as a proapoptotic factor in DN and possibly also in hypertensive nephropathy.


Journal of The American Society of Nephrology | 2014

Targeted Glomerular Angiopoietin-1 Therapy for Early Diabetic Kidney Disease

Cecile Dessapt-Baradez; Adrian S. Woolf; Kathryn White; Jiaqi Pan; Jennifer L. Huang; A Hayward; Karen L. Price; Maria Kolatsi-Joannou; Maelle Locatelli; Marine Diennet; Zoe Webster; Sarah Jane Smillie; Viji Nair; Matthias Kretzler; Clemens D. Cohen; David A. Long; Luigi Gnudi

Vascular growth factors play an important role in maintaining the structure and integrity of the glomerular filtration barrier. In healthy adult glomeruli, the proendothelial survival factors vascular endothelial growth factor-A (VEGF-A) and angiopoietin-1 are constitutively expressed in glomerular podocyte epithelia. We demonstrate that this milieu of vascular growth factors is altered in streptozotocin-induced type 1 diabetic mice, with decreased angiopoietin-1 levels, VEGF-A upregulation, decreased soluble VEGF receptor-1 (VEGFR1), and increased VEGFR2 phosphorylation. This was accompanied by marked albuminuria, nephromegaly, hyperfiltration, glomerular ultrastructural alterations, and aberrant angiogenesis. We subsequently hypothesized that restoration of angiopoietin-1 expression within glomeruli might ameliorate manifestations of early diabetic glomerulopathy. Podocyte-specific inducible repletion of angiopoietin-1 in diabetic mice caused a 70% reduction of albuminuria and prevented diabetes-induced glomerular endothelial cell proliferation; hyperfiltration and renal morphology were unchanged. Furthermore, angiopoietin-1 repletion in diabetic mice increased Tie-2 phosphorylation, elevated soluble VEGFR1, and was paralleled by a decrease in VEGFR2 phosphorylation and increased endothelial nitric oxide synthase Ser(1177) phosphorylation. Diabetes-induced nephrin phosphorylation was also reduced in mice with angiopoietin-1 repletion. In conclusion, targeted angiopoietin-1 therapy shows promise as a renoprotective tool in the early stages of diabetic kidney disease.

Collaboration


Dive into the Viji Nair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Nelson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenjun Ju

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge