Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank C. Brosius is active.

Publication


Featured researches published by Frank C. Brosius.


Journal of The American Society of Nephrology | 2004

Mouse Models of Diabetic Nephropathy

Frank C. Brosius; Charles E. Alpers; Erwin P. Böttinger; Matthew D. Breyer; Thomas M. Coffman; Susan B. Gurley; Raymond C. Harris; Masao Kakoki; Matthias Kretzler; Edward H. Leiter; Moshe Levi; Richard A. McIndoe; Kumar Sharma; Oliver Smithies; Katalin Susztak; Nobuyuki Takahashi; Takamune Takahashi

Diabetic nephropathy is a major cause of ESRD worldwide. Despite its prevalence, a lack of reliable animal models that mimic human disease has delayed the identification of specific factors that cause or predict diabetic nephropathy. The Animal Models of Diabetic Complications Consortium (AMDCC) was created in 2001 by the National Institutes of Health to develop and characterize models of diabetic nephropathy and other complications. This interim report and our online supplement detail the progress made toward that goal, specifically in the development and testing of murine models. Updates are provided on validation criteria for early and advanced diabetic nephropathy, phenotyping methods, the effect of background strain on nephropathy, current best models of diabetic nephropathy, negative models, and views of future directions. AMDCC investigators and other investigators in the field have yet to validate a complete murine model of human diabetic kidney disease. Nonetheless, the critical analysis of existing murine models substantially enhances our understanding of this disease process.


The American Journal of Medicine | 1981

Radiation heart disease: Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart

Frank C. Brosius; Bruce F. Waller; William C. Roberts

Certain clinical and necropsy findings are described in 16 young (aged 15 to 33 years) patients who received greater than 3,500 rads to the heart five to 144 months before death. All 16 had some radiation-induced damage to the heart: 15 had thickened pericardia (five of whom had evidence of cardiac tamponade); eight had increased interstitial myocardial fibrosis, particularly in the right ventricle; 12 had fibrous thickening of the mural endocardium and 13 of the valvular endocardium. Except for valvular thickening, the changes were more frequent in the right side of the heart than in the left, presumably because of higher radiation doses to the anterior surface of the heart. In six of the 16 study patients and in one of 10 control subjects, one or more major epicardial coronary arteries were narrowed from 76 to 100 percent in cross-sectional area by atherosclerotic plaque; one patient had a healed myocardial infarct at necropsy and one died suddenly. In 10 patients and in the 10 control subjects, the four major epicardial coronary arteries were examined quantitatively: 6 percent of the 469 five millimeter segments of coronary artery from the patients were narrowed from 76 to 100 percent (controls = 0.2 percent, p = 0.06) and 22 percent were narrowed from 51 to 75 percent (controls = 12 percent). The proximal portion of the arteries in the patients had significantly more narrowing than the distal portions. The arterial plaques in the patients were largely composed of fibrous tissue; the media were frequently replaced by fibrous tissue, and the adventitia were often densely thickened by fibrous tissue. In five patients, there was focal thickening (with or without luminal narrowing) of the intramural coronary arteries. Thus, radiation to the heart may produce a wide spectrum of functional and anatomic changes but particularly damage to the pericardia and the underlying epicardial coronary arteries.


Circulation | 1994

Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes.

Da Qing Sun; Ngoc Nguyen; Timothy R. DeGrado; Markus Schwaiger; Frank C. Brosius

BackgroundAcute myocardial ischemia is accompanied by an increase in glucose uptake and metabolism, which appears to be important in protecting myocardial cells from irreversible ischemic injury. Because insulin augments myocardial glucose uptake by inducing the translocation of glucose transporters from an intracellular compartment to the plasma membrane, we hypothesized that acute ischemia would trigger a similar translocation. Methods and ResultsWe used a subcellular fractionation method to separate intracellular membranes and plasma membranes from control, ischemic, and hypoxic Langendorff-isolated perfused rat hearts and determined the expression of the major myocardial glucose transporter, GLUT4, in these separated membrane fractions. We found that translocation of GLUT4 molecules occurred in ischemic, hypoxic, and insulintreated hearts and in hearts that underwent ischemia plus insulin treatment. The percentages of GLUT4 molecules present on the plasma membrane in the different conditions were as follows: control. 18.0±2.8%; ischemia, 41.3±9.4%; hypoxia, 31.1±2.9%; insulin, 61.1±2.6%; and ischemia plus insulin, 66.8±5.7%. Among the statistically significant differences in these values were the difference between control and ischemia and the difference between ischemia alone and insulin plus ischemia. ConclusionsIschemia causes substantial translocation of GLUT4 molecules to the plasma membrane of cardiac myocytes. A combination of insulin plus ischemia stimulates an even greater degree of GLUT4 translocation. GLUT4 translocation is likely to mediate at least part of the increased glucose uptake of ischemic myocardium and may be a mechanism for the cardioprotective effect of insulin during acute myocardial ischemia.


Journal of Biological Chemistry | 1999

Glucose Uptake and Glycolysis Reduce Hypoxia-induced Apoptosis in Cultured Neonatal Rat Cardiac Myocytes

Ricky Malhotra; Frank C. Brosius

Myocardial ischemia/reperfusion is well recognized as a major cause of apoptotic or necrotic cell death. Neonatal rat cardiac myocytes are intrinsically resistant to hypoxia-induced apoptosis, suggesting a protective role of energy-generating substrates. In the present report, a model of sustained hypoxia of primary cultures of Percoll-enriched neonatal rat cardiac myocytes was used to study specifically the modulatory role of extracellular glucose and other intermediary substrates of energy metabolism (pyruvate, lactate, propionate) as well as glycolytic inhibitors (2-deoxyglucose and iodoacetate) on the induction and maintenance of apoptosis. In the absence of glucose and other substrates, hypoxia (5% CO2 and 95% N2) caused apoptosis in 14% of cardiac myocytes at 3 h and in 22% of cells at 6–8 h of hypoxia, as revealed by sarcolemmal membrane blebbing, nuclear fragmentation, and chromatin condensation (Hoechst staining), terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and DNA laddering. This was accompanied by translocation of cytochrome c from the mitochondria to the cytosol and cleavage of the death substrate poly(ADP-ribose) polymerase. Cleavage of poly(ADP-ribose) polymerase and DNA laddering were prevented by preincubation with the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (zDEVD-fmk), indicating activation of caspases in the apoptotic process. The caspase inhibitor zDEVD-fmk also partially inhibited cytochrome c translocation. The presence of as little as 1 mm glucose, but not pyruvate, lactate, or propionate, before hypoxia prevented apoptosis. Inhibiting glycolysis by 2-deoxyglucose or iodoacetate, in the presence of glucose, reversed the protective effect of glucose. This study demonstrates that glycolysis of extracellular glucose, and not other metabolic pathways, protects cardiac myocytes from hypoxic injury and subsequent apoptosis.


Journal of Clinical Investigation | 2013

AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function

Laura L. Dugan; Young Hyun You; Sameh S. Ali; Maggie K. Diamond-Stanic; Satoshi Miyamoto; Anne-Emilie Declèves; Aleksander Y. Andreyev; Tammy Quach; San Ly; Grigory Shekhtman; William Nguyen; Andre Chepetan; Thuy Le; Lin Wang; Ming Xu; Kacie P. Paik; Agnes B. Fogo; Benoit Viollet; Anne N. Murphy; Frank C. Brosius; Robert K. Naviaux; Kumar Sharma

Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.


Circulation Research | 1999

Mechanical Stretch and Angiotensin II Differentially Upregulate the Renin-Angiotensin System in Cardiac Myocytes In Vitro

Ricky Malhotra; Junichi Sadoshima; Frank C. Brosius; Seigo Izumo

Pressure overload in vivo results in left ventricular hypertrophy and activation of the renin-angiotensin system in the heart. Mechanical stretch of neonatal rat cardiac myocytes in vitro causes secretion of angiotensin II (Ang II), which in turn plays a pivotal role in mechanical stretch-induced hypertrophy. Although in vivo data suggest that the stimulus of hemodynamic overload serves as an important modulator of cardiac renin-angiotensin system (RAS) activity, it is not clear whether observed upregulation of RAS genes is a direct effect of hemodynamic stress or is secondary to neurohumoral effects in response to hemodynamic overload. Moreover, it is unclear whether activation of the local RAS in response to hemodynamic overload predominantly occurs in cardiac myocytes or fibroblasts or both. In the present study, we examined the effect of mechanical stretch on expression of angiotensinogen, renin, angiotensin-converting enzyme (ACE), and Ang II receptor (AT(1A), AT(1B), and AT(2)) genes in neonatal rat cardiac myocytes and cardiac fibroblasts in vitro. The level of expression of angiotensinogen, renin, ACE, and AT(1A) genes was low in unstretched cardiac myocytes, but stretch upregulated expression of these genes at 8 to 24 hours. Stimulation of cardiac myocytes with Ang II also upregulated expression of angiotensinogen, renin, and ACE genes, whereas it downregulated AT(1A) and did not affect AT(1B) gene expression. Although losartan, a specific AT(1) antagonist, completely inhibited Ang II-induced upregulation of angiotensinogen, renin, and ACE genes, as well as stretch-induced upregulation of AT(1A) expression, it did not block upregulation of angiotensinogen, renin, and ACE genes by stretch. Western blot analyses showed increased expression of angiotensinogen and renin protein at 16 to 24 hours of stretch. The ACE-like activity was also significantly elevated at 24 hours after stretch. Radioligand binding assays revealed that stretch significantly upregulated the AT(1) density on cardiac myocytes. Interestingly, stretch of cardiac fibroblasts did not result in any discernible increases in the expression of RAS genes. Our results indicate that mechanical stretch in vitro upregulates both mRNA and protein expression of RAS components specifically in cardiac myocytes. Furthermore, components of the cardiac RAS are independently and differentially regulated by mechanical stretch and Ang II in neonatal rat cardiac myocytes.


American Journal of Physiology-renal Physiology | 1999

Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney

Hong Shen; David E. Smith; Tianxin Yang; Yuning G. Huang; Jurgen Schnermann; Frank C. Brosius

To determine the renal localization of oligopeptide transporters, Northern blot analyses were performed and polyclonal antisera were generated against PEPT1 and PEPT2, the two cloned rat H+/peptide transporters. Under high-stringency conditions, a 3.0-kb mRNA transcript of rat PEPT1 was expressed primarily in superficial cortex, whereas a 3.5-kb mRNA transcript of PEPT2 was expressed primarily in deep cortex/outer stripe of outer medulla. PEPT1 antisera detected a specific band on immunoblots of renal and intestinal brush-border membrane vesicles (BBMV) with an apparent mobility of approximately 90 kDa. PEPT2 antisera detected a specific broad band of approximately 85 kDa in renal but not in intestinal BBMV. PEPT1 immunolocalization experiments showed detection of a brush border antigen in S1 segments of the proximal tubule and in the brush border of villi from all segments of the small intestine. In contrast, PEPT2 immunolocalization was primarily confined to the brush border of S3 segments of the proximal tubule. All other nephron segments in rat were negative for PEPT1 and PEPT2 staining. Overall, our results conclusively demonstrate that although PEPT1 is expressed in early regions of the proximal tubule (pars convoluta), PEPT2 is specific for the latter regions of proximal tubule (pars recta).To determine the renal localization of oligopeptide transporters, Northern blot analyses were performed and polyclonal antisera were generated against PEPT1 and PEPT2, the two cloned rat H+/peptide transporters. Under high-stringency conditions, a 3.0-kb mRNA transcript of rat PEPT1 was expressed primarily in superficial cortex, whereas a 3.5-kb mRNA transcript of PEPT2 was expressed primarily in deep cortex/outer stripe of outer medulla. PEPT1 antisera detected a specific band on immunoblots of renal and intestinal brush-border membrane vesicles (BBMV) with an apparent mobility of ∼90 kDa. PEPT2 antisera detected a specific broad band of ∼85 kDa in renal but not in intestinal BBMV. PEPT1 immunolocalization experiments showed detection of a brush border antigen in S1 segments of the proximal tubule and in the brush border of villi from all segments of the small intestine. In contrast, PEPT2 immunolocalization was primarily confined to the brush border of S3 segments of the proximal tubule. All other nephron segments in rat were negative for PEPT1 and PEPT2 staining. Overall, our results conclusively demonstrate that although PEPT1 is expressed in early regions of the proximal tubule (pars convoluta), PEPT2 is specific for the latter regions of proximal tubule (pars recta).


Diabetes | 2009

Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy

Céline C. Berthier; Hongyu Zhang; MaryLee Schin; Anna Henger; Robert G. Nelson; Berne Yee; Anissa Boucherot; Matthias A. Neusser; Clemens D. Cohen; Christin Carter-Su; Lawrence S. Argetsinger; Maria Pia Rastaldi; Frank C. Brosius; Matthias Kretzler

OBJECTIVE—Glomerular mesangial expansion and podocyte loss are important early features of diabetic nephropathy, whereas tubulointerstitial injury and fibrosis are critical for progression of diabetic nephropathy to kidney failure. Therefore, we analyzed the expression of genes in glomeruli and tubulointerstitium in kidney biopsies from diabetic nephropathy patients to identify pathways that may be activated in humans but not in murine models of diabetic nephropathy that fail to progress to glomerulosclerosis, tubulointerstitial fibrosis, and kidney failure. RESEARCH DESIGN AND METHODS—Kidney biopsies were obtained from 74 patients (control subjects, early and progressive type 2 diabetic nephropathy). Glomerular and tubulointerstitial mRNAs were microarrayed, followed by bioinformatics analyses. Gene expression changes were confirmed by real-time RT-PCR and immunohistological staining. Samples from db/db C57BLKS and streptozotocin-induced DBA/2J mice, commonly studied murine models of diabetic nephropathy, were analyzed. RESULTS—In human glomeruli and tubulointerstitial samples, the Janus kinase (Jak)-signal transducer and activator of transcription (Stat) pathway was highly and significantly regulated. Jak-1, -2, and -3 as well as Stat-1 and -3 were expressed at higher levels in patients with diabetic nephropathy than in control subjects. The estimated glomerular filtration rate significantly correlated with tubulointerstitial Jak-1, -2, and -3 and Stat-1 expression (R2 = 0.30–0.44). Immunohistochemistry found strong Jak-2 staining in glomerular and tubulointerstitial compartments in diabetic nephropathy compared with control subjects. In contrast, there was little or no increase in expression of Jak/Stat genes in the db/db C57BLKS or diabetic DBA/2J mice. CONCLUSIONS—These data suggest a direct relationship between tubulointerstitial Jak/Stat expression and progression of kidney failure in patients with type 2 diabetic nephropathy and distinguish progressive human diabetic nephropathy from nonprogressive murine diabetic nephropathy.


American Journal of Physiology-renal Physiology | 1999

Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney

Tianxin Yang; Daniel E. Michele; John M. Park; Ann Smart; Zhiwu Lin; Frank C. Brosius; Jurgen Schnermann; Josephine P. Briggs

The discovery that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is a ligand for the gamma-isoform of peroxisome proliferator-activated receptor (PPAR) suggests nuclear signaling by prostaglandins. Studies were undertaken to determine the nephron localization of PPAR isoforms and their heterodimer partners, retinoid X receptors (RXR), and to evaluate the function of this system in the kidney. PPARalpha mRNA, determined by RT-PCR, was found predominately in cortex and further localized to proximal convoluted tubule (PCT); PPARgamma was abundant in renal inner medulla, localized to inner medullary collecting duct (IMCD) and renal medullary interstitial cells (RMIC); PPARbeta, the ubiquitous form of PPAR, was abundant in all nephron segments examined. RXRalpha was localized to PCT and IMCD, whereas RXRbeta was expressed in almost all nephron segments examined. mRNA expression of acyl-CoA synthase (ACS), a known PPAR target gene, was stimulated in renal cortex of rats fed with fenofibrate, but the expression was not significantly altered in either cortex or inner medulla of rats fed with troglitazone. In cultured RMIC cells, both troglitazone and 15d-PGJ2 significantly inhibited cell proliferation and dramatically altered cell shape by induction of cell process formation. We conclude that PPAR and RXR isoforms are expressed in a nephron segment-specific manner, suggesting distinct functions, with PPARalpha being involved in energy metabolism through regulating ACS in PCT and with PPARgamma being involved in modulating RMIC growth and differentiation.The discovery that 15-deoxy-Δ12,14-prostaglandin J2(15d-PGJ2) is a ligand for the γ-isoform of peroxisome proliferator-activated receptor (PPAR) suggests nuclear signaling by prostaglandins. Studies were undertaken to determine the nephron localization of PPAR isoforms and their heterodimer partners, retinoid X receptors (RXR), and to evaluate the function of this system in the kidney. PPARα mRNA, determined by RT-PCR, was found predominately in cortex and further localized to proximal convoluted tubule (PCT); PPARγ was abundant in renal inner medulla, localized to inner medullary collecting duct (IMCD) and renal medullary interstitial cells (RMIC); PPARβ, the ubiquitous form of PPAR, was abundant in all nephron segments examined. RXRα was localized to PCT and IMCD, whereas RXRβ was expressed in almost all nephron segments examined. mRNA expression of acyl-CoA synthase (ACS), a known PPAR target gene, was stimulated in renal cortex of rats fed with fenofibrate, but the expression was not significantly altered in either cortex or inner medulla of rats fed with troglitazone. In cultured RMIC cells, both troglitazone and 15d-PGJ2 significantly inhibited cell proliferation and dramatically altered cell shape by induction of cell process formation. We conclude that PPAR and RXR isoforms are expressed in a nephron segment-specific manner, suggesting distinct functions, with PPARα being involved in energy metabolism through regulating ACS in PCT and with PPARγ being involved in modulating RMIC growth and differentiation.


Diabetes | 2008

From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy.

Ying Qian; Eva L. Feldman; Subramanian Pennathur; Matthias Kretzler; Frank C. Brosius

Progression of diabetic nephropathy to end-stage kidney disease is mediated by a host of processes, but none is as important as the gradual, inexorable scarring of the renal glomerulus, known as glomerulosclerosis. Hence, a host of studies over the decades have attempted to elucidate the molecular mechanisms that lead to this chronic sclerosing condition so that effective therapies and preventative strategies can be developed. Over the past several years, the general understanding of the pathogenic factors that lead to this important feature of diabetic nephropathy has improved considerably. Glomerulosclerosis in diabetic nephropathy is caused by accumulation of extracellular matrix (ECM) proteins in the mesangial interstitial space, resulting in fibrosis manifested by either diffuse or nodular changes (1). The most common matrix proteins detected are collagen types I, III, and IV and fibronectin (2). These accumulate both due to increased synthesis by mesangial cells and reduced degradation by mesangial matrix metalloproteinases (3). Over 20 years ago, Mauer et al. (4) established the clear link between mesangial matrix expansion and progression of diabetic kidney disease by demonstrating that measures of mesangial expansion strongly predicted the clinical manifestations of diabetic nephropathy. Since then, the critical charge to investigators has been to elucidate the mechanisms that promote glomerulosclerosis in diabetic nephropathy. In this brief perspective, we will review pathogenic processes that appear to be critical in the development of diabetic glomerulosclerosis, emphasizing newer findings and insights. During the 1990s, a general consensus emerged about major signaling mechanisms involved in stimulating mesangial cell synthesis of ECM proteins (Fig. 1). In this consensus view, high extracellular glucose induces an increase in glucose uptake via increased expression of the facilitative glucose transporter GLUT1 (5,6). The resultant enhancement in glucose metabolic flux leads to activation of a number of metabolic pathways that result in increased advanced …

Collaboration


Dive into the Frank C. Brosius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jharna Saha

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Viji Nair

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josie P. Briggs

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge