Viktor Tomilin
University of Texas Health Science Center at Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Viktor Tomilin.
Biochemical Journal | 2016
Abinash C. Mistry; B. M. Wynne; Ling Yu; Viktor Tomilin; Qiang Yue; Yiqun Zhou; Otor Al-Khalili; Rickta Mallick; Hui Cai; Abdel A. Alli; Ko Br; Alexa L. Mattheyses; Hui Fang Bao; Oleh Pochynyuk; Franziska Theilig; Douglas C. Eaton; Robert S. Hoover
The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.
American Journal of Physiology-renal Physiology | 2016
Oleg Zaika; Oleg Palygin; Viktor Tomilin; Mykola Mamenko; Alexander Staruschenko; Oleh Pochynyuk
Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD.
Journal of The American Society of Nephrology | 2016
Mykola Mamenko; Isha S. Dhande; Viktor Tomilin; Oleg Zaika; Nabila Boukelmoune; Yaming Zhu; Manuel L. Gonzalez-Garay; Oleh Pochynyuk; Peter A. Doris
Store-operated calcium entry (SOCE) is the mechanism by which extracellular signals elicit prolonged intracellular calcium elevation to drive changes in fundamental cellular processes. Here, we investigated the role of SOCE in the regulation of renal water reabsorption, using the inbred rat strain SHR-A3 as an animal model with disrupted SOCE. We found that SHR-A3, but not SHR-B2, have a novel truncating mutation in the gene encoding stromal interaction molecule 1 (STIM1), the endoplasmic reticulum calcium (Ca(2+)) sensor that triggers SOCE. Balance studies revealed increased urine volume, hypertonic plasma, polydipsia, and impaired urinary concentrating ability accompanied by elevated circulating arginine vasopressin (AVP) levels in SHR-A3 compared with SHR-B2. Isolated, split-open collecting ducts (CD) from SHR-A3 displayed decreased basal intracellular Ca(2+) levels and a major defect in SOCE. Consequently, AVP failed to induce the sustained intracellular Ca(2+) mobilization that requires SOCE in CD cells from SHR-A3. This effect decreased the abundance of aquaporin 2 and enhanced its intracellular retention, suggesting impaired sensitivity of the CD to AVP in SHR-A3. Stim1 knockdown in cultured mpkCCDc14 cells reduced SOCE and basal intracellular Ca(2+) levels and prevented AVP-induced translocation of aquaporin 2, further suggesting the effects in SHR-A3 result from the expression of truncated STIM1. Overall, these results identify a novel mechanism of nephrogenic diabetes insipidus and uncover a role of SOCE in renal water handling.
Kidney International | 2017
Mykola Mamenko; Nabila Boukelmoune; Viktor Tomilin; Oleg Zaika; V. Behrana Jensen; Roger G. O’Neil; Oleh Pochynyuk
To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance.
Seminars in Immunopathology | 2016
Viktor Tomilin; Mykola Mamenko; Oleg Zaika; Oleh Pochynyuk
Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies.
American Journal of Physiology-renal Physiology | 2016
Robert S. Hoover; Viktor Tomilin; Lauren N Hanson; Oleh Pochynyuk; Ko Br
Since parathyroid hormone (PTH) is known to increase transient receptor potential vanilloid (TRPV)5 activity and decrease Na(+)-Cl(-) cotransporter (NCC) activity, we hypothesized that decreased NCC-mediated Na(+) reabsorption contributes to the enhanced TRPV5 Ca(2+) reabsorption seen with PTH. To test this, we used mDCT15 cells expressing functional TRPV5 and ruthenium red-sensitive (45)Ca(2+) uptake. PTH increased (45)Ca(2+) uptake to 8.8 ± 0.7 nmol·mg(-1)·min(-1) (n = 4, P < 0.01) and decreased NCC activity from 75.4 ± 2.7 to 20.3 ± 1.3 nmol·mg(-1)·min(-1) (n = 4, P < 0.01). Knockdown of Ras guanyl-releasing protein (RasGRP)1 had no baseline effect on (45)Ca(2+) uptake but significantly attenuated the response to PTH from a 45% increase (6.0 ± 0.2 to 8.7 ± 0.4 nmol·mg(-1)·min(-1)) in control cells to only 20% in knockdown cells (6.1 ± 0.1 to 7.3 ± 0.2 nmol·mg(-1)·min(-1), n = 4, P < 0.01). Inhibition of PKC and PKA resulted in further attenuation of the PTH effect. RasGRP1 knockdown decreased the magnitude of the TRPV5 response to PTH (7.9 ± 0.1 nmol·mg(-1)·min(-1) for knockdown compared with 9.1 ± 0.1 nmol·mg(-1)·min(-1) in control), and the addition of thiazide eliminated this effect (a nearly identical 9.0 ± 0.1 nmol·mg(-1)·min(-1)). This indicates that functionally active NCC is required for RasGRP1 knockdown to impact the PTH effect on TRPV5 activity. Knockdown of with no lysine kinase (WNK)4 resulted in an attenuation of the increase in PTH-mediated TRPV5 activity. TRPV5 activity increased by 36% compared with 45% in control (n = 4, P < 0.01 between PTH-treated groups). PKC blockade further attenuated the PTH effect, whereas combined PKC and PKA blockade in WNK4KD cells abolished the effect. We conclude that modulation of NCC activity contributes to the response to PTH, implying a role for hormonal modulation of NCC activity in distal Ca(2+) handling.
Journal of Cellular Physiology | 2018
Mykola Mamenko; Oleg Zaika; Viktor Tomilin; V. Behrana Jensen; Oleh Pochynyuk
ENaC‐mediated sodium reabsorption in the collecting duct (CD) is a critical determinant of urinary sodium excretion. Existing evidence suggest direct stimulatory actions of Angiotensin II (Ang II) on ENaC in the CD, independently of the aldosterone‐mineralocorticoid receptor (MR) signaling. Deletion of the major renal AT1 receptor isoform, AT1aR, decreases blood pressure and reduces ENaC abundance despite elevated aldosterone levels. The mechanism of this insufficient compensation is not known. Here, we used patch clamp electrophysiology in freshly isolated split‐opened CDs to investigate how AT1aR dysfunction compromises functional ENaC activity and its regulation by dietary salt intake. Ang II had no effect on ENaC activity in CDs from AT1aR −/− mice suggesting no complementary contribution of AT2 receptors. We next found that AT1aR deficient mice had lower ENaC activity when fed with low (<0.01% Na+) and regular (0.32% Na+) but not with high (∼2% Na+) salt diet, when compared to the respective values obtained in Wild type (WT) animals. Inhibition of AT1R with losartan in wild‐type animals reproduces the effects of genetic ablation of AT1aR on ENaC activity arguing against contribution of developmental factors. Interestingly, manipulation with aldosterone‐MR signaling via deoxycosterone acetate (DOCA) and spironolactone had much reduced influence on ENaC activity upon AT1aR deletion. Consistently, AT1aR −/− mice have a markedly diminished MR abundance in cytosol. Overall, we conclude that AT1aR deficiency elicits a complex inhibitory effect on ENaC activity by attenuating ENaC Po and precluding adequate compensation via aldosterone cascade due to decreased MR availability.
Cell and Tissue Research | 2013
Daria V. Ilatovskaya; Vladislav I. Chubinskiy-Nadezhdin; Tengis S. Pavlov; Leonid S. Shuyskiy; Viktor Tomilin; Oleg Palygin; Alexander Staruschenko; Yuri A. Negulyaev
Pflügers Archiv: European Journal of Physiology | 2018
Viktor Tomilin; Oleg Zaika; Arohan R. Subramanya; Oleh Pochynyuk
The FASEB Journal | 2018
Alena Cherezova; Viktor Tomilin; Vadym Buncha; Oleg Zaika; Pablo A. Ortiz; Fang C. Mei; Xiaodong Cheng; Mykola Mamenko; Oleh Pochynyuk