Vilim Filipović
University of Zagreb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vilim Filipović.
Science of The Total Environment | 2014
Vilim Filipović; Yves Coquet; Valérie Pot; Sabine Houot; Pierre Benoit
Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy.
Ecotoxicology and Environmental Safety | 2018
Lana Filipović; Marija Romić; Davor Romić; Vilim Filipović; Gabrijel Ondrašek
Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg-1). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCln2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability.
Soil and Water Research | 2016
Monika Marković; Vilim Filipović; Tarzan Legović; Marko Josipović; Vjekoslav Tadić
Irrigation efficiency improvement requires optimization of its parameters like irrigation scheduling, threshold and amount of water usage. If these parameters are not satisfactorily optimized, negative consequences for the plantsoil system can occur with decreased yield and hence economic viability of the agricultural production. Numerical modelling represents an efficient, i.e. simple and fast method for optimizing and testing different irrigation scenarios. In this study HYDRUS-1D model assuming single- and dual- porosity systems was used to evaluate a triggered irrigation module for irrigation scheduling in maize/soybean cropping trials. Irrigation treatment consisted of two irrigation regimes (A2 = 60–100% field capacity (FC) and A3 = 80–100% FC) and control plot (A1) without irrigation. The model showed a very good fit to the measured data with satisfactory model efficiency values of 0.77, 0.69, and 0.93 (single-porosity model) and 0.84, 0.67, and 0.92 (dual-porosity model) for A1, A2, and A3 plots, respectively. The single-porosity model gave a slightly better fit in the irrigated plots while the dual-porosity model gave better performance in the control plot. This inconsistency between the two approaches is due to the manual irrigation triggering and uncertainty in field data timing collection. Using the triggered irrigation module provided more irrigation events during maize and soybean crop rotation and consequently increased cumulative amounts of irrigated water. However, that increase resulted in more water available in the root zone during high evapotranspiration period. The HYDRUS code can be used to optimize irrigation threshold values further by assuming different scenarios (e.g. different irrigation threshold or scheduling) or a different crop.
Journal of Hydrology and Hydromechanics | 2018
Vilim Filipović; Thomas Weninger; Lana Filipović; Andreas Schwen; Keith L. Bristow; Sophie Zechmeister-Boltenstern; Sonja Leitner
Abstract Global climate change is projected to continue and result in prolonged and more intense droughts, which can increase soil water repellency (SWR). To be able to estimate the consequences of SWR on vadose zone hydrology, it is important to determine soil hydraulic properties (SHP). Sequential modeling using HYDRUS (2D/3D) was performed on an experimental field site with artificially imposed drought scenarios (moderately M and severely S stressed) and a control plot. First, inverse modeling was performed for SHP estimation based on water and ethanol infiltration experimental data, followed by model validation on one selected irrigation event. Finally, hillslope modeling was performed to assess water balance for 2014. Results suggest that prolonged dry periods can increase soil water repellency. Inverse modeling was successfully performed for infiltrating liquids, water and ethanol, with R2 and model efficiency (E) values both > 0.9. SHP derived from the ethanol measurements showed large differences in van Genuchten-Mualem (VGM) parameters for the M and S plots compared to water infiltration experiments. SWR resulted in large saturated hydraulic conductivity (Ks) decrease on the M and S scenarios. After validation of SHP on water content measurements during a selected irrigation event, one year simulations (2014) showed that water repellency increases surface runoff in non-structured soils at hillslopes.
Archive | 2016
Vilim Filipović; Gabrijel Ondrašek; Lana Filipović
Large numbers of numerical models are nowadays available for the description of physical and chemical processes affecting water flow and solute transport in soil vadose zone. This chapter explains basic principles of water flow and solute transport modelling in soil vadose (variably saturated) zone and some of the most important processes present in it. First part deals with water dynamics in the soil, that is, soil water content, pressure head, soil porosity, and water flow. Also, some of the measurement techniques used to estimate water dynamics in soil are explained. Water retention curve and soil hydraulic properties needed for modelling are briefly discussed with the explanation of basic (i.e. most commonly used) hydraulic relationship in soil (van Genuchten equation) and water flow (Richards equation) approaches. Second part includes solute transport description in vadose zone, including processes such as advection, diffusion, dispersion, and adsorption. Basic advection‐dispersion equation is explained and also the implementation of boun‐ dary and initial conditions in the numerical model. Preferential flow is shortly discussed with the basic principles behind its occurrence and modelling in the soil vadose zone. One real case one‐dimensional (1D) example of modelling with HYDRUS software is presented in which water flow and nitrate transport is simulated on the lysimeter study. Short overview of the most widely used numerical models for simulating vadose zone processes is also presented, whereas the final part is focused on chemical speciation modelling in relatively homogeneous soil solutions using visual MINTEQ interface.
Agricultural Water Management | 2016
Vilim Filipović; Davor Romić; Marija Romić; Josip Borošić; Lana Filipović; Fábio Joel Kochem Mallmann; David A. Robinson
Agriculture, Ecosystems & Environment | 2014
Fábio Joel Kochem Mallmann; Danilo dos Santos Rheinheimer; Carlos Alberto Ceretta; Cesar Cella; Jean Paolo Gomes Minella; Rosana Lamana Guma; Vilim Filipović; Folkert van Oort; Jirka Šimůnek
Agricultural Water Management | 2014
Vilim Filipović; Fábio Joel Kochem Mallmann; Yves Coquet; Jirka Šimůnek
Journal of Food Agriculture & Environment | 2012
Vilim Filipović; Dragutin Petošić; Zoran Nakić; Ivan Mustać; Stanko Ružičić; Monika Zovko; Marina Cvjetko Bubalo
Nutrient Cycling in Agroecosystems | 2013
Vilim Filipović; Radka Kodešová; Dragutin Petošić