Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinay Baranwal is active.

Publication


Featured researches published by Vinay Baranwal.


Journal of Experimental Botany | 2012

Heterosis: emerging ideas about hybrid vigour

Vinay Baranwal; Venugopal Mikkilineni; Usha Barwale Zehr; Akhilesh K. Tyagi; Sanjay Kapoor

Perceived by Charles Darwin in many vegetable plants and rediscovered by George H Shull and Edward M East in maize, heterosis or hybrid vigour is one of the most widely utilized phenomena, not only in agriculture but also in animal breeding. Although, numerous studies have been carried out to understand its genetic and/or molecular basis in the past 100 years, our knowledge of the underlying molecular processes that results in hybrid vigour can best be defined as superficial. Even after century long deliberations, there is no consensus on the relative/individual contribution of the genetic/epigenetic factors in the manifestation of heterosis. However, with the recent advancements in functional genomics, transcriptomics, proteomics, and metabolomics-related technologies, the riddle of heterosis is being reinvestigated by adopting systems-level approaches to understand the underlying molecular mechanisms. A number of intriguing hypotheses are converging towards the idea of a cumulative positive effect of the differential expression of a variety of genes, on one or several yield-affecting metabolic pathways or overall energy-use efficiency, as the underlying mechanism for the manifestation of heterosis. Presented here is a brief account of clues gathered from various investigative approaches targeted towards better scientific understanding of this process.


PLOS ONE | 2012

Rice phospholipase A superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development.

Amarjeet Singh; Vinay Baranwal; Alka Shankar; Poonam Kanwar; Rajeev Ranjan; Sandeep Kumar Yadav; Amita Pandey; Sanjay Kapoor; Girdhar K. Pandey

Background Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice. Methodology/Principal Findings A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A1 (PLA1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling. Conclusion/Significance The comprehensive analysis and expression profiling would provide a critical platform for the functional characterization of the candidate PLA genes in crop plants.


Plant Signaling & Behavior | 2012

Comprehensive expression analysis of rice phospholipase D gene family during abiotic stresses and development

Amarjeet Singh; Amita Pandey; Vinay Baranwal; Sanjay Kapoor; Girdhar K. Pandey

Phospholipase D is one of the crucial enzymes involved in lipid mediated signaling, triggered during various developmental and physiological processes. Different members of PLD gene family have been known to be induced under different abiotic stresses and during developmental processes in various plant species. In this report, we are presenting a detailed microarray based expression analysis and expression profiles of entire set of PLD genes in rice genome, under three abiotic stresses (salt, cold and drought) and different developmental stages (3-vegetative stages and 11-reproductive stages). Seven and nine PLD genes were identified, which were expressed differentially under abiotic stresses and during reproductive developmental stages, respectively. PLD genes, which were expressed significantly under abiotic stresses exhibited an overlapping expression pattern and were also differentially expressed during developmental stages. Moreover, expression pattern for a set of stress induced genes was validated by real time PCR and it supported the microarray expression data. These findings emphasize the role of PLDs in abiotic stress signaling and development in rice. In addition, expression profiling for duplicated PLD genes revealed a functional divergence between the duplicated genes and signify the role of gene duplication in the evolution of this gene family in rice. This expressional study will provide an important platform in future for the functional characterization of PLDs in crop plants.


FEBS Journal | 2014

Genome‐wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice

Amarjeet Singh; Poonam Kanwar; Akhilesh K. Yadav; Manali Mishra; Saroj K. Jha; Vinay Baranwal; Amita Pandey; Sanjay Kapoor; Akhilesh K. Tyagi; Girdhar K. Pandey

Ca2+ homeostasis is required to maintain a delicate balance of cytosolic Ca2+ during normal and adverse growth conditions. Various Ca2+ transporters actively participate to maintain this delicate balance especially during abiotic stresses and developmental events in plants. In this study, we present a genome‐wide account, detailing expression profiles, subcellular localization and functional analysis of rice Ca2+ transport elements. Exhaustive in silico data mining and analysis resulted in the identification of 81 Ca2+ transport element genes, which belong to various groups such as Ca2+‐ATPases (pumps), exchangers, channels, glutamate receptor homologs and annexins. Phylogenetic analysis revealed that different Ca2+ transporters are evolutionarily conserved across different plant species. Comprehensive expression analysis by gene chip microarray and quantitative RT‐PCR revealed that a substantial proportion of Ca2+ transporter genes were expressed differentially under abiotic stresses (salt, cold and drought) and reproductive developmental stages (panicle and seed) in rice. These findings suggest a possible role of rice Ca2+ transporters in abiotic stress and development triggered signaling pathways. Subcellular localization of Ca2+ transporters from different groups in Nicotiana benthamiana revealed their variable localization to different compartments, which could be their possible sites of action. Complementation of Ca2+ transport activity of K616 yeast mutant by Ca2+‐ATPase OsACA7 and involvement in salt tolerance verified its functional behavior. This study will encourage detailed characterization of potential candidate Ca2+ transporters for their functional role in planta.


DNA Research | 2014

Comprehensive Expression Analysis of Rice Armadillo Gene Family During Abiotic Stress and Development

Manisha Sharma; Amarjeet Singh; Alka Shankar; Amita Pandey; Vinay Baranwal; Sanjay Kapoor; Akhilesh K. Tyagi; Girdhar K. Pandey

Genes in the Armadillo (ARM)-repeat superfamily encode proteins with a range of developmental and physiological processes in unicellular and multicellular eukaryotes. These 42 amino acid, long tandem repeat-containing proteins have been abundantly recognized in many plant species. Previous studies have confirmed that Armadillo proteins constitute a multigene family in Arabidopsis. In this study, we performed a computational analysis in the rice genome (Oryza sativa L. subsp. japonica), and identified 158 genes of Armadillo superfamily. Phylogenetic study classified them into several arbitrary groups based on a varying number of non-conserved ARM repeats and accessory domain(s) associated with them. An in-depth analysis of gene expression through microarray and Q-PCR revealed a number of ARM proteins expressing differentially in abiotic stresses and developmental conditions, suggesting a potential roles of this superfamily in development and stress signalling. Comparative phylogenetic analysis between Arabidopsis and rice Armadillo genes revealed a high degree of evolutionary conservation between the orthologues in two plant species. The non-synonymous and synonymous substitutions per site ratios (Ka/Ks) of duplicated gene pairs indicate a purifying selection. This genome-wide identification and expression analysis provides a basis for further functional analysis of Armadillo genes under abiotic stress and reproductive developmental condition in the plant lineage.


Scientific Reports | 2016

Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry.

Vinay Baranwal; Nisha Negi; Paramjit Khurana

Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry.


The Plant Genome | 2016

Identification and Expression Profiling of the Lectin Gene Superfamily in Mulberry

Bushra Saeed; Vinay Baranwal; Paramjit Khurana

Identification of lectin catalogues in Morus notabilis genome Genome‐wide expression profiling of lectins Role of lectins in stress responses in mulberry


Genes | 2017

Auxin Response Factor Genes Repertoire in Mulberry: Identification, and Structural, Functional and Evolutionary Analyses

Vinay Baranwal; Nisha Negi; Paramjit Khurana

Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers an opportunity to investigate this important gene family. A total of 17 ARFs have been identified from mulberry (Morus notabilis) which show a wide range of expression patterns. Of these 17 ARFs, 15 have strong acidic isoelectric point (pI) values and a molecular mass ranging from 52 kDa to 101 kDa. The putative promoters of these ARFs harbour cis motifs related to light-dependent responses, various stress responses and hormone regulations suggestive of their multifactorial regulation. The gene ontology terms for ARFs indicate their role in flower development, stress, root morphology and other such development and stress mitigation related activities. Conserved motif analysis showed the presence of all typical domains in all but four members that lack the PB1 domain and thus represent truncated ARFs. Expression analysis of these ARFs suggests their preferential expression in tissues ranging from leaf, root, winter bud, bark and male flowers. These ARFs showed differential expression in the leaf tissue of M. notabilis, Morus laevigata and Morus serrata. Insights gained from this analysis have implications in mulberry improvement programs.


Plant Physiology and Biochemistry | 2017

Major intrinsic proteins repertoire of Morus notabilis and their expression profiles in different species

Vinay Baranwal; Paramjit Khurana

Leaf moisture content in Morus is a significant trait regulating the yield of silk production. Studies have shown that fresh leaves or leaves with high water content are preferably eaten by silk worm. Water and certain other molecules transport in plants is known to be regulated by aquaporins or Major Intrinsic Proteins (MIPs). Members of the MIP gene family have also been implicated in plant development and stress responsiveness. To understand how members of MIP gene family are regulated and evolved, we carried out an extensive analysis of the gene family. We identified a total of 36 non redundant MIPs in Morus notabilis genome, belonging to five subfamilies PIPs, TIPs, NIPs, XIPs and SIPs) have been identified. We performed a Gene ontology (GO) term enrichment analysis and looked at distribution of cis elements in their 2K upstream regulatory region to reveal their putative roles in various stresses and developmental aspects. Expression analysis in developmental stages revealed their tissue preferential expression pattern in diverse vegetative and reproductive tissues. Comparison of expression profiles in the leaves of three species including Morus notabilis, Morus serrata and Morus laevigata led to identification of differential expression in these species. In all, this study elaborates a basic insight into the structure, function and evolutionary analysis of MIP gene family in Morus which is hitherto unavailable. Our analysis will provide a ready reference to the mulberry research community involved in the Morus improvement program.


Plant Physiology and Biochemistry | 2018

Identification of Triticum aestivum nsLTPs and functional validation of two members in development and stress mitigation roles

Suboot Hairat; Vinay Baranwal; Paramjit Khurana

Role of plant nsLTP in biotic stress is well reported; however, their role during abiotic stress is far from clear. This study comprises genome-wide identification of LTPs and characterizes the regulation and function of two Triticum aestivum lipid transfer proteins, TaLTP40 and TaLTP75, under stresses that influence membrane fluidity. A total of 105 LTP gene family members have been identified. The selected LTPs for functional validation were highly expressed during salt, cold and drought stress. Further, selected LTPs showed differential expression thermotolerant and thermosusceptible wheat cultivars. Higher expression of many TaLTPs was observed under different abiotic stresses in thermotolerant wheat cultivars as compared to thermosusceptible cultivars. TaLTPs regulation was correlated with light energy distribution studies under similar stress conditions. Cellular localization revealed localization of different TaLTPs to the tonoplast membrane along with the organelles involved in the secretory pathway. Induction of TaLTPs was observed upon treatment with dimethylsulphoxide. TaLTP40 and TaLTP75 overexpressing transgenic Arabidopsis showed a constitutively enhanced salt tolerance. Both the TaLTP40 and TaLTP75 overexpressing lines performed better in terms of chlorophyll a fluorescence, total chlorophyll content, membrane injury index, total biomass, percentage germination, percentage survival and relative growth rate. Hence, our analyses indicate that TaLTPs expression might be driven by change in membrane fluidity and could be involved in transferring membrane lipids to the biological membranes thus imparting tolerance to various abiotic stresses.

Collaboration


Dive into the Vinay Baranwal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge