Vincent Archambault
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent Archambault.
Nature Reviews Molecular Cell Biology | 2009
Vincent Archambault; David M. Glover
Polo-like kinases (Plks) are potent regulators of M phase that are conserved from yeasts to humans. Their roles in mitotic entry, spindle pole functions and cytokinesis are broadly conserved despite physical and molecular differences in these processes in disparate organisms. Plks are characterized by their Polo-box domain, which mediates protein interactions. They are additionally controlled by phosphorylation, proteolysis and transcription, depending on the biological context. Plks are now recognized to link cell division to developmental processes and to function in differentiated cells. A comparison of Plk function and regulation between organisms offers insight into the rich variations of cell division.
PLOS ONE | 2007
Marcin R. Przewloka; Wei Zhang; Patrícia da Silva Campelo Costa; Vincent Archambault; Pier Paolo D'Avino; Kathryn S. Lilley; Ernest D. Laue; Andrew D. McAinsh; David M. Glover
Background Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. Methodology/Principal Findings We employed bioinformatics, proteomics and cell biology methods to identify and analyze the interaction network of Drosophila kinetochore proteins. We have shown that three Drosophila proteins highly diverged from human and yeast Ndc80, Nuf2 and Mis12 are indeed their orthologues. Affinity purification of these proteins from cultured Drosophila cells identified a further five interacting proteins with weak similarity to subunits of the SPC105/KNL-1, MIND/MIS12 and NDC80 kinetochore complexes together with known kinetochore associated proteins such as dynein/dynactin, spindle assembly checkpoint components and heterochromatin proteins. All eight kinetochore complex proteins were present at the kinetochore during mitosis and MIND/MIS12 complex proteins were also centromeric during interphase. Their down-regulation led to dramatic defects in chromosome congression/segregation frequently accompanied by mitotic spindle elongation. The systematic depletion of each individual protein allowed us to establish dependency relationships for their recruitment onto the kinetochore. This revealed the sequential recruitment of individual members of first, the MIND/MIS12 and then, NDC80 complex. Conclusions/Significance The Drosophila MIND/MIS12 and NDC80 complexes and the Spc105 protein, like their counterparts from other eukaryotic species, are essential for chromosome congression and segregation, but are highly diverged in sequence. Hierarchical dependence relationships of individual proteins regulate the assembly of Drosophila kinetochore complexes in a manner similar, but not identical, to other organisms.
PLOS Biology | 2012
Mar Carmena; Xavier Pinson; Melpi Platani; Zeina Salloum; Zhenjie Xu; Anthony Clark; Fiona MacIsaac; Hiromi Ogawa; Ulrike S. Eggert; David M. Glover; Vincent Archambault; William C. Earnshaw
INCENP acts as a protein scaffold that integrates the functions of two crucial mitotic kinases, Aurora B and Polo, at centromeres of mitotic chromosomes.
Developmental Biology | 2009
Sarah P. Blagden; Melanie K. Gatt; Vincent Archambault; Karolina Lada; Keiko Ichihara; Kathryn S. Lilley; Yoshihiro H. Inoue; David M. Glover
As the influence of mRNA translation upon cell cycle regulation becomes clearer, we searched for genes that might specify such control in Drosophila. A maternal-effect lethal screen identified mutants in the Drosophila gene for Larp (La-related protein) which displayed maternal-effect lethality and male sterility. A role for La protein has already been implicated in mRNA translation whereas Larp has been proposed to regulate mRNA stability. Here we demonstrate that Larp exists in a physical complex with, and also interacts genetically with, the translation regulator poly(A)-binding protein (PABP). Most mutant alleles of pAbp are embryonic lethal. However hypomorphic pAbp alleles show similar meiotic defects to larp mutants. We find that larp mutant-derived syncytial embryos show a range of mitotic phenotypes, including failure of centrosomes to migrate around the nuclear envelope, detachment of centrosomes from spindle poles, the formation of multipolar spindle arrays and cytokinetic defects. We discuss why the syncytial mitotic cycles and male meiosis should have a particularly sensitive requirement for Larp proteins in regulating not only transcript stability but also potentially the translation of mRNAs.
Genes & Development | 2008
Vincent Archambault; Pier Paolo D’Avino; Michael J. Deery; Kathryn S. Lilley; David M. Glover
The conserved Polo kinase controls multiple events in mitosis and cytokinesis. Although Polo-like kinases are regulated by phosphorylation and proteolysis, control of subcellular localization plays a major role in coordinating their mitotic functions. This is achieved largely by the Polo-Box Domain, which binds prephosphorylated targets. However, it remains unclear whether and how Polo might interact with partner proteins when priming mitotic kinases are inactive. Here we show that Polo associates with microtubules in interphase and cytokinesis, through a strong interaction with the microtubule-associated protein Map205. Surprisingly, this interaction does not require priming phosphorylation of Map205, and the Polo-Box Domain of Polo is required but not sufficient for this interaction. Moreover, phosphorylation of Map205 at a CDK site relieves this interaction. Map205 can stabilize Polo and inhibit its cellular activity in vivo. In syncytial embryos, the centrosome defects observed in polo hypomorphs are enhanced by overexpression of Map205 and suppressed by its deletion. We propose that Map205-dependent targeting of Polo to microtubules provides a stable reservoir of Polo that can be rapidly mobilized by the activity of Cdk1 at mitotic entry.
PLOS ONE | 2007
Pier Paolo D'Avino; Vincent Archambault; Marcin R. Przewloka; Wei Zhang; Kathryn S. Lilley; Ernest D. Laue; David M. Glover
Background Polo-like kinases control multiple events during cell division, including mitotic entry, centrosome organization, spindle formation, chromosome segregation and cytokinesis. Their roles during cytokinesis, however, are not well understood because the requirement of these kinases during early stages of mitosis complicates the study of their functions after anaphase onset. Methodology/Principal Findings We used time-lapse microscopy to analyze the dynamics of Polo::GFP in Drosophila tissue culture cells during mitosis. After anaphase onset, Polo::GFP concentrated at the spindle midzone, but also diffused along the entire length of the central spindle. Using RNA interference we demonstrate that the microtubule-associated proteins Feo and Klp3A are required for Polo recruitment to the spindle midzone, but not the kinesin Pavarotti as previously thought. Moreover, we show that Feo and Klp3A form a complex and that Polo co-localizes with both proteins during cytokinesis. Conclusion/Significance Our results reveal that the Feo/Klp3A complex is necessary for Polo recruitment to the spindle midzone. A similar finding has also been recently reported in mammalian cells [1], suggesting that this basic mechanism has been conserved during evolution, albeit with some differences. Finally, since cleavage furrow formation and ingression are unaffected following feo RNAi, our data imply that Polo recruitment to the central spindle is not required for furrowing, but some other aspect of cytokinesis.
Cell Cycle | 2005
Vincent Archambault; Nicolas E. Buchler; Gwendolyn M. Wilmes; Matthew D. Jacobson; Frederick R. Cross
We recently reported that the ‘hydrophobic patch’ (HP) of the Saccharomyces cerevisiae S-phase cyclin Clb5 facilitates its interaction with Orc6 (via its Cy or RXL motif), providing a mechanism that helps prevent re-replication from individual origins.1 This is the first finding of a biological function for an interaction between a cyclin and a cyclin-binding motif (Cy or RXL motif) in a target protein in Saccharomyces cerevisiae. It is also the first such example involving a B-type cyclin in any organism. Yet, some of our observations as well as work from other groups suggest that HP-RXL interactions are functionally important for cyclin-Cdk signaling to other targets. The evolutionary conservation of the HP motif suggests that it allows cyclins to carry out important and specialized functions.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Luisa Capalbo; Pier Paolo D'Avino; Vincent Archambault; David M. Glover
The small GTPase Rab5 is a conserved regulator of membrane trafficking; it regulates the formation of early endosomes, their transport along microtubules, and the fusion to the target organelles. Although several members of the endocytic pathway were recently implicated in spindle organization, it is unclear whether Rab5 has any role during mitosis. Here, we describe that Rab5 is required for proper chromosome alignment during Drosophila mitoses. We also found that Rab5 associated in vivo with nuclear Lamin and mushroom body defect (Mud), the Drosophila counterpart of nuclear mitotic apparatus protein (NuMA). Consistent with this finding, Rab5 was required for the disassembly of the nuclear envelope at mitotic entry and the accumulation of Mud at the spindle poles. Furthermore, Mud depletion caused chromosome misalignment defects that resembled the defects of Rab5 RNAi cells, and double-knockdown experiments indicated that the two proteins function in a linear pathway. Our results indicate a role for Rab5 in mitosis and reinforce the emerging view of the contributions made by cell membrane dynamics to spindle function.
Cell Cycle | 2012
Vincent Archambault; Maria Carmena
The events of cell division are regulated by a complex interplay between kinases and phosphatases. Cyclin-dependent kinases (Cdks), polo-like kinases (Plks) and Aurora kinases play central roles in this process. Polo kinase (Plk1 in humans) regulates a wide range of events in mitosis and cytokinesis. To ensure the accuracy of these processes, polo activity itself is subject to complex regulation. Phosphorylation of polo in its T loop (or activation loop) increases its kinase activity several-fold. It has been shown that Aurora A kinase, with its co-factor Bora, activates Plk1 in G2, and that this is essential for recovery from cell cycle arrest induced by DNA damage. In a recent article published in PLoS Biology, we report that Drosophila polo is activated by Aurora B kinase at centromeres, and that this is crucial for polo function in regulating chromosome dynamics in prometaphase. Our results suggest that this regulatory pathway is conserved in humans. Here, we propose a model for the collaboration between Aurora B and polo in the regulation of kinetochore attachment to microtubules in early mitosis. Moreover, we suggest that Aurora B could also function to activate Polo/Plk1 in cytokinesis. Finally, we discuss recent findings and open questions regarding the activation of polo and polo-like kinases by different kinases in mitosis, cytokinesis and other processes.
Methods of Molecular Biology | 2009
Pier Paolo D’Avino; Vincent Archambault; Marcin R. Przewloka; Wei Zhang; Ernest D. Laue; David M. Glover
The identification of all the individual components that constitute the plethora of complexes in each cell type represents perhaps the most exciting challenge of postgenomic biology. This is particularly important in the study of events such as mitosis and cytokinesis, in which rapid and precise protein-protein interactions regulate both the direction and accuracy of these intricate processes. Here we describe an experimental strategy to isolate protein complexes involved in mitosis and cytokinesis in cultured Drosophila cells. This method involves the tagging of the bait protein with two IgG binding domains of Protein A and the isolation of the tagged bait along with its interacting partners by a single affinity purification step. These isolated complexes can then be analysed by several methods including mass spectrometry and Western blotting. Although this method has proven very successful in isolating mitotic and cytokinetic complexes, it can also be used to characterise protein complexes involved in many other cellular processes.