Vincent Gauci
Open University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent Gauci.
Nature | 2013
Sam Moore; Chris D. Evans; Susan E. Page; Mark H. Garnett; Timothy G. Jones; Chris Freeman; Aljosja Hooijer; Andrew J. Wiltshire; Suwido Limin; Vincent Gauci
Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia—an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.
Global Biogeochemical Cycles | 2002
Vincent Gauci; Nancy B. Dise; D. Fowler
The effect of acid rain SO42− deposition on peatland CH4 emissions was examined by manipulating SO42− inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha−1 yr−1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m−2 from the controls and (in order of increasing SO42− dose size) 10.7, 13.2, and 9.8 g m−2 from the three SO42− treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42− at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42− from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.
New Phytologist | 2013
Sunitha Rao Pangala; Sam Moore; Edward R. C. Hornibrook; Vincent Gauci
Wetlands are the largest source of methane to the atmosphere, with tropical wetlands comprising the most significant global wetland source component. The stems of some wetland-adapted tree species are known to facilitate egress of methane from anoxic soil, but current ground-based flux chamber methods for determining methane inventories in forested wetlands neglect this emission pathway, and consequently, the contribution of tree-mediated emissions to total ecosystem methane flux remains unknown. In this study, we quantify in situ methane emissions from tree stems, peatland surfaces (ponded hollows and hummocks) and root-aerating pneumatophores in a tropical forested peatland in Southeast Asia. We show that tree stems emit substantially more methane than peat surfaces, accounting for 62-87% of total ecosystem methane flux. Tree stem flux strength was controlled by the stem diameter, wood specific density and the amount of methane dissolved in pore water. Our findings highlight the need to integrate this emission pathway in both field studies and models if wetland methane fluxes are to be characterized accurately in global methane budgets, and the discrepancies that exist between field-based flux inventories and top-down estimates of methane emissions from tropical areas are to be reconciled.
Global Biogeochemical Cycles | 2014
Chris D. Evans; Susan E. Page; Timothy G. Jones; Sam Moore; Vincent Gauci; Raija Laiho; Jakub Hruška; Tim Allott; Michael F. Billett; Edward Tipping; Chris Freeman; Mark H. Garnett
Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young ( 500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.
Environmental Research | 2011
Chuan Tong; Linhai Zhang; Weiqi Wang; Vincent Gauci; R.H. Marrs; Baigui Liu; Ruixia Jia; Congsheng Zeng
We compared the influence of invasion by an alien invasive species (Spartina alterniflora, smooth cordgrass) and a native aggressive species (Phragmites australis, common reed) as they have expanded into the native Cyperus malaccensis (shichito matgrass)-dominated wetland ecosystem in the Min River estuary of southeast China. S. alterniflora is a perennial grass native to North America, which has spread rapidly along the southeast coast of China since its introduction in 1979. Our study compared the above and belowground biomass, net primary production, litter decomposition, plant nutrient stocks and soil organic carbon storage of the grasses in three ecosystems: (1) the native ecosystem dominated by C. malaccensis; (2) ecosystems previously dominated by C. malaccensis but presently replaced by P. australis; and (3) ecosystems previously dominated by C. malaccensis but presently replaced by S. alterniflora. Our results demonstrate that the recent invasion (3 years) of the exotic invasive species S. alterniflora has already significantly increased live aboveground biomass and aboveground plant nutrient stocks. However, there was no significant difference in these variables between native aggressive species P. australis and native C. malaccensis. The majority of belowground root Carbon (C), Nitrogen (N) and phosphorus (P) stocks of the three plant species were all distributed in the upper surface layer and there was a decrease with soil depth. There was little difference in litter decomposition rates among the three grass species; they were ranked in the following order: C. malaccensis>S. alterniflora>P. australis. Litter element concentration showed similar patterns for the three species. However, important differences were found between N and P; the litter N concentrations in each of the three species were greater at the end of the 280 days decomposition than at the start, but P concentrations followed a fluctuating pattern during the decomposition period. Soil organic carbon stocks (0-50cm) under S. alterniflora, P. australis and C. malaccensis stands were statistically indistinguishable, which may be due to the invasion of S. alterniflora having been a relatively recent phenomenon. Thus, recent invasion of the exotic species S. alterniflora has already altered the nutrient cycle of C. malaccensis in the ecosystem in the Min River estuary.
Global Change Biology | 2015
Sunitha Rao Pangala; Edward R. C. Hornibrook; David J. Gowing; Vincent Gauci
Wetland-adapted trees are known to transport soil-produced methane (CH4 ), an important greenhouse gas to the atmosphere, yet seasonal variations and controls on the magnitude of tree-mediated CH4 emissions remain unknown for mature forests. We examined the spatial and temporal variability in stem CH4 emissions in situ and their controls in two wetland-adapted tree species (Alnus glutinosa and Betula pubescens) located in a temperate forested wetland. Soil and herbaceous plant-mediated CH4 emissions from hollows and hummocks also were measured, thus enabling an estimate of contributions from each pathway to total ecosystem flux. Stem CH4 emissions varied significantly between the two tree species, with Alnus glutinosa displaying minimal seasonal variations, while substantial seasonal variations were observed in Betula pubescens. Trees from each species emitted similar quantities of CH4 from their stems regardless of whether they were situated in hollows or hummocks. Soil temperature and pore-water CH4 concentrations best explained annual variability in stem emissions, while wood-specific density and pore-water CH4 concentrations best accounted for between-species variations in stem CH4 emission. Our study demonstrates that tree-mediated CH4 emissions contribute up to 27% of seasonal ecosystem CH4 flux in temperate forested wetland, with the largest relative contributions occurring in spring and winter. Tree-mediated CH4 emissions currently are not included in trace gas budgets of forested wetland. Further work is required to quantify and integrate this transport pathway into CH4 inventories and process-based models.
Geophysical Research Letters | 2005
Vincent Gauci; Nancy B. Dise; Stephen Blake
Wetlands are a potent source of the radiatively important gas methane (CH4). Recent findings have demonstrated that sulfate (SO42−) deposition via acid rain suppresses CH4 emissions by stimulating competitive exclusion of methanogens by sulfate‐reducing microbial populations. Here we report data from a field experiment showing that a finite pulse of simulated acid rain SO42− deposition, as would be expected from a large Icelandic volcanic eruption, continues to suppress CH4 emissions from wetlands long after the pollution event has ceased. Our analysis of the stoichiometries suggests that 5 years is a minimum CH4 emission recovery period, with 10 years being a reasonable upper limit. Our findings highlight the long‐term impact of acid rain on biospheric output of CH4 which, for discrete polluting events such as volcanic eruptions, outlives the relatively short‐term SO42− aerosol radiative cooling effect.
New Phytologist | 2011
Carl Boardman; Vincent Gauci; Jonathan S. Watson; Stephen Blake; David J. Beerling
Wetlands were the largest source of atmospheric methane (CH(4) ) during the Last Glacial Maximum (LGM), but the sensitivity of this source to exceptionally low atmospheric CO(2) concentration ([CO(2) ]) at the time has not been examined experimentally. We tested the hypothesis that LGM atmospheric [CO(2) ] reduced CH(4) emissions as a consequence of decreased photosynthate allocation to the rhizosphere. We exposed minerotrophic fen and ombrotrophic bog peatland mesocosms to simulated LGM (c. 200 ppm) or ambient (c. 400 ppm) [CO(2) ] over 21 months (n = 8 per treatment) and measured gaseous CH(4) flux, pore water dissolved CH(4) and volatile fatty acid (VFA; an indicator of plant carbon supply to the rhizosphere) concentrations. Cumulative CH(4) flux from fen mesocosms was suppressed by 29% (P < 0.05) and rhizosphere pore water [CH(4) ] by c. 50% (P < 0.01) in the LGM [CO(2) ], variables that remained unaffected in bog mesocosms. VFA analysis indicated that changes in plant root exudates were not the driving mechanism behind these results. Our data suggest that the LGM [CO(2) ] suppression of wetland CH(4) emissions is contingent on trophic status. The heterogeneous response may be attributable to differences in species assemblage that influence the dominant CH(4) production pathway, rhizosphere supplemented photosynthesis and CH(4) oxidation.
Applications in Plant Sciences | 2015
Dušan Materić; Dan Bruhn; Claire Turner; Geraint Morgan; Nigel J. Mason; Vincent Gauci
Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.
Nature | 2017
Sunitha Rao Pangala; Alex Enrich-Prast; Luana S. Basso; Roberta Bittencourt Peixoto; David Bastviken; Edward R. C. Hornibrook; Luciana V. Gatti; Humberto Marotta; Luana Silva Braucks Calazans; Cassia Mônica Sakuragui; Wanderley Rodrigues Bastos; Olaf Malm; Emanuel Gloor; J. B. Miller; Vincent Gauci
Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.