Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent M.J.I. Cuijpers is active.

Publication


Featured researches published by Vincent M.J.I. Cuijpers.


Bone | 2008

In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering

Balaji Sitharaman; Xinfeng Shi; X. Frank Walboomers; Hongbing Liao; Vincent M.J.I. Cuijpers; Lon J. Wilson; Antonios G. Mikos; John A. Jansen

Scaffolds play a pivotal role in the tissue engineering paradigm by providing temporary structural support, guiding cells to grow, assisting the transport of essential nutrients and waste products, and facilitating the formation of functional tissues and organs. Single-walled carbon nanotubes (SWNTs), especially ultra-short SWNTs (US-tubes), have proven useful for reinforcing synthetic polymeric scaffold materials. In this article, we report on the in vivo biocompatibility of US-tube reinforced porous biodegradable scaffolds in a rabbit model. US-tube nanocomposite scaffolds and control polymer scaffolds were implanted in rabbit femoral condyles and in subcutaneous pockets. The hard and soft tissue response was analyzed with micro-computed tomography (micro CT), histology, and histomorphometry at 4 and 12 weeks after implantation. The porous US-tube nanocomposite scaffolds exhibited favorable hard and soft tissue responses at both time points. At 12 weeks, a three-fold greater bone tissue ingrowth was seen in defects containing US-tube nanocomposite scaffolds compared to control polymer scaffolds. Additionally, the 12 week samples showed reduced inflammatory cell density and increased connective tissue organization. No significant quantitative difference in polymer degradation was observed among the various groups; qualitative differences between the two time points were consistent with expected degradation due to the progression of time. Although no conclusions can be drawn from the present study concerning the osteoinductivity of US-tube nanocomposite scaffolds, the results suggest that the presence of US-tubes may render nanocomposite scaffolds bioactive assisting osteogenesis.


Journal of Biomedical Materials Research Part A | 2008

Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites.

Dennis P. Link; Juliette van den Dolder; Jeroen J. J. P. van den Beucken; Vincent M.J.I. Cuijpers; J.G.C. Wolke; Antonios G. Mikos; J.A. Jansen

In this study, the biocompatibility of a calcium phosphate (CaP) cement incorporating poly (D,L-lactic-co-glycolic acid) (PLGA) microparticles was evaluated in a subcutaneous implantation model in rats. Short-term biocompatibility was assessed using pure CaP discs and CaP discs incorporating PLGA microparticles (20% w/w) with and without preincubation in water. Long-term biocompatibility was assessed using CaP discs incorporating varying amounts (5, 10, or 20% w/w) and diameter sizes (small, 0-50 mum; medium, 51-100 mum, or large, 101-200 mum) of PLGA microparticles. The short-term biocompatibility results showed a mild tissue response for all implant formulations, irrespective of disc preincubation, during the early implantation periods up to 12 days. Quantitative histological evaluation revealed that the different implant formulations induced the formation of similar fibrous tissue capsules and interfaces. The results concerning long-term biocompatibility showed that all implants were surrounded by a thin connective tissue capsule (<10 layers of fibroblasts). Additionally, no significant differences in capsule and interface scores were observed between the different implant formulations. The implants containing 20% PLGA with medium- and large-sized microparticles showed fibrous tissue ingrowth throughout the implants, indicating PLGA degradation and interconnectivity of the pores. The results demonstrate that CaP/PLGA composites evoke a minimal inflammatory response. The implants containing 20% PLGA with medium- and large-sized microparticles showed fibrous tissue ingrowth after 12- and 24-weeks indicating PLGA degradation and interconnectivity of the pores. Therefore, CaP/PLGA composites can be regarded as biocompatible biomaterials with potential for bone tissue engineering and advantageous possibilities of the microparticles regarding material porosity.


Journal of Histochemistry and Cytochemistry | 2004

Intracellular Localization of Ornithine Decarboxylase and Its Regulatory Protein, Antizyme-1

Raymond G. Schipper; Vincent M.J.I. Cuijpers; Linda H.J.M. de Groot; Marco Thio; A.A.J. Verhofstad

The enzyme ornithine decarboxylase (ODC) and its regulatory protein antizyme-1 (AZ1) are key regulators in the homeostasis of polyamines. To gain more insight into the exact intracellular distribution of ODC and AZ1, we performed immunocytochemical and Green Fluorescent Protein-fluorocytochemical studies in cultured human cervix carcinoma and human prostatic carcinoma (PC-346C) cells. ODC localization patterns varied from predominantly cytoplasmic to both cytoplasmic and nuclear staining, whereas AZ1 was mostly found in the nucleus. In cells that were synchronized in the mitotic phase, localization of both ODC and AZ1 changed from perinuclear at the beginning of mitosis into nucleoplasmic at close proximity to the chromosomes during meta-, ana- and telophase. Upon completion of mitosis, localization of ODC and AZ1 was reverted back to the cytoplasm, i.e., predominantly perinuclear immediately after cytokinesis. When PC-346C cells were treated with polyamines to induce AZ1-regulated ODC degradation, ODC was predominantly found in the nucleus and colocalized with immunoreactive AZ1. A comparable accumulation of ODC and AZ1 in the nucleus was found in PC-346C cells treated with the polyamine analog SL-11093. The present study suggests that AZ1 is involved in nucleocyto-plasmic shuttling of ODC, which may be a prerequisite for ODC regulation and/or function.


Journal of Dental Research | 2013

Calcium-phosphate-coated Oral Implants Promote Osseointegration in Osteoporosis

Hamdan S. Alghamdi; Vincent M.J.I. Cuijpers; J.G.C. Wolke; J.J.J.P van den Beucken; John A. Jansen

Osteoporotic conditions are anticipated to affect the osseointegration of dental implants. This study aimed to evaluate the effect of a radiofrequent magnetron-sputtered calcium phosphate (CaP) coating on dental implant integration upon installment in the femoral condyles of both healthy and osteoporotic rats. At 8 weeks post-implantation, bone volume and histomorphometric bone area were lower around non-coated implants in osteoporotic rats compared with healthy rats. Interestingly, push-out tests revealed significantly enhanced implant fixation for CaP-coated compared with non-coated implants in both osteoporotic (i.e., 2.9-fold) and healthy rats (i.e., 1.5-fold), with similar implant fixation for CaP-coated implants in osteoporotic conditions compared with that of non-coated implants in healthy conditions. Further, the presence of a CaP coating significantly increased bone-to-implant contact compared with that in non-coated implants in both osteoporotic (i.e., 1.3-fold) and healthy rats (i.e., 1.4-fold). Sequential administration of fluorochrome labels showed significantly increased bone dynamics close to CaP-coated implants at 3 weeks of implantation in osteoporotic conditions and significantly decreased bone dynamics in osteoporotic compared with healthy conditions. In conclusion, analysis of the data obtained demonstrated that dental implant modification with a thin CaP coating effectively improves osseointegration in both healthy and osteoporotic conditions.


Tissue Engineering Part C-methods | 2009

Micro-computed tomographical imaging of soft biological materials using contrast techniques.

Kaeuis A. Faraj; Vincent M.J.I. Cuijpers; Ronnie G. Wismans; X. Frank Walboomers; John A. Jansen; Toin H. van Kuppevelt; Willeke F. Daamen

The aim of this work was to introduce high-resolution computed tomography (micro-CT) for scaffolds made from soft natural biomaterials, and to compare these data with the conventional techniques scanning electron microscopy and light microscopy. Collagen-based scaffolds were used as examples. Unlike mineralized tissues, collagen scaffolds do not provide enough X-ray attenuation for micro-CT imaging. Therefore, various metal-based contrast agents were applied and evaluated using two structurally distinct scaffolds, one with round pores and one with unidirectional lamellae. The optimal contrast techniques for obtaining high-resolution three-dimensional images were either a combination of osmium tetroxide and uranyl acetate, or a combination of uranyl acetate and lead citrate. The data obtained by micro-CT analysis were in line with data obtained by light and electron microscopy. However, small structures (less than a few mum) could not be visualized due to limitation of the spot size of the micro-CT apparatus. In conclusion, reliable three-dimensional images of scaffolds prepared from soft natural biomaterials can be obtained using appropriate contrast protocols. This extends the use of micro-CT analysis to soft materials, such as protein-based biomaterials.


Acta Biomaterialia | 2010

Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel.

Martin J.W. Koens; Kaeuis A. Faraj; Ronnie G. Wismans; J.A. van der Vliet; A.G. Krasznai; Vincent M.J.I. Cuijpers; John A. Jansen; Willeke F. Daamen; T.H. van Kuppevelt

There is a consistent need for a suitable natural biomaterial to function as an arterial prosthesis in achieving arterial regeneration. Natural grafts are generally obtained by decellularization of native blood vessels, but batch to batch variations may occur and the nature/content of remaining contaminants is generally unknown. In this study we fabricated a molecularly defined natural arterial graft from scratch resembling the native three layered architecture from the fibrillar extracellular matrix components collagen and elastin. Using casting, moulding, freezing and lyophilization techniques, a triple layered construct was prepared consisting of an inner layer of elastin fibres, a middle (porous) film layer of collagen fibrils and an outer scaffold layer of collagen fibrils. The construct was carbodiimide cross-linked and heparinized. Characterization included biochemical/biophysical analyses, scanning electron microscopy, micro-computed tomography, (immuno)histology and haemocompatibility. Burst pressures were up to 400mm Hg and largely conferred by the intermediate porous collagen film layer. The highly purified type I collagen fibrils and elastin fibres used did not evoke platelet aggregation in vitro. Suturability of the graft in end to side anastomosis was successful and considered adequate for in vivo application.


Biomedical Materials | 2014

Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses

Timothy Douglas; Wojciech Piwowarczyk; Elzbieta Pamula; Jana Liskova; David Schaubroeck; Sander C. G. Leeuwenburgh; Gilles Brackman; Lieve Balcaen; Rainer Detsch; Heidi Declercq; Katarzyna Cholewa-Kowalska; Agnieszka Dokupil; Vincent M.J.I. Cuijpers; Frank Vanhaecke; Ria Cornelissen; Tom Coenye; Aldo R. Boccaccini; Peter Dubruel

Hydrogels of biocompatible calcium-crosslinkable polysaccharide gellan gum (GG) were enriched with bioglass particles to enhance (i) mineralization with calcium phosphate (CaP); (ii) antibacterial properties and (iii) growth of bone-forming cells for future bone regeneration applications. Three bioglasses were compared, namely one calcium-rich and one calcium-poor preparation both produced by a sol-gel technique (hereafter referred to as A2 and S2, respectively) and one preparation of composition close to that of the commonly used 45S5 type (hereafter referred to as NBG). Incubation in SBF for 7 d, 14 d and 21 d caused apatite formation in bioglass-containing but not in bioglass-free samples, as confirmed by FTIR, XRD, SEM, ICP-OES, and measurements of dry mass, i.e. mass attributable to polymer and mineral and not water. Mechanical testing revealed an increase in compressive modulus in samples containing S2 and NBG but not A2. Antibacterial testing using biofilm-forming meticillin-resistant staphylococcus aureus (MRSA) showed markedly higher antibacterial activity of samples containing A2 and S2 than samples containing NBG and bioglass-free samples. Cell biological characterization using rat mesenchymal stem cells (rMSCs) revealed a stimulatory effect of NBG on rMSC differentiation. The addition of bioglass thus promotes GG mineralizability and, depending on bioglass type, antibacterial properties and rMSC differentiation.


Acta Biomaterialia | 2012

Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases.

Marco A. Lopez-Heredia; Matilde Bongio; Marc Bohner; Vincent M.J.I. Cuijpers; Louis Winnubst; Natasja van Dijk; J.G.C. Wolke; Jeroen J. J. P. van den Beucken; John A. Jansen

Calcium phosphate cements (CPCs) use the simultaneous presence of several calcium phosphates phases. This is done to generate specific bulk and in vivo properties. This work has processed and evaluated novel multiphasic CPCs containing dual tricalcium phosphate (TCPs) phases. Dual TCPs containing α- and β-TCP phases were obtained by thermal treatment. Standard CPC (S-CPC) was composed of α-TCP, anhydrous dicalcium phosphate and precipitated hydroxyapatite, while modified CPC (DT-CPC) included both α- and β-TCP. Physicochemical characterization of these CPCs was based on scanning electron microscopy, X-ray diffraction, specific surface area (SSA) and particle size (PS) analysis and mechanical properties. This characterization allowed the selection of one DT-CPC for setting time, cohesion and biological assessment compared with S-CPC. Biological assessment was carried out using a tibial intramedullary cavity model and subcutaneous pouches in guinea pigs. Differences in the surface morphology and crystalline phases of the treated TCPs were detected, although PS analysis of the milled CPC powders produced similar results. SSA analysis was significantly higher for DT-CPC with α-TCP treated at 1100°C for 5h. Poorer mechanical properties were found for DT-CPC with α-TCP treated at 1000°C. Setting time and cohesion, as well as the in vivo performance, were similar in the selected DT-CPC and the S-CPC. Both CPCs created the desired host reactions in vivo.


Tissue Engineering Part C-methods | 2011

Scanning electron microscopy stereoimaging for three-dimensional visualization and analysis of cells in tissue-engineered constructs: technical note.

Vincent M.J.I. Cuijpers; X. Frank Walboomers; John A. Jansen

In tissue engineering research, various three-dimensional (3D) techniques are available to study cell morphology, biomaterials, and their relations. To overcome disadvantages of frequently used imaging techniques, in the current study stereoimaging scanning electron microscopy (SEM) is proposed. First, the 3D SEM application was validated using a series of standardized microspheres. Thereafter, MC-3T3 cell morphology was visualized and cell parameters as cell height were quantified on titanium and calcium-phosphate materials using 3D reconstruction software. Besides 3D visualization of the cells, quantitative assessment showed significant substrate dependency of cell spreading in time. Such quantification of cell spreading kinetics can be used for optimization of tissue engineering scaffold surface properties. However, further standardization of SEM image acquisition and 3D SEM software settings are still essential for 3D cell analysis.


Journal of Biomedical Materials Research Part A | 2015

Osteogenesis around CaP-coated titanium implants visualized using 3D histology and micro-computed tomography

Vincent M.J.I. Cuijpers; Hamdan S. Alghamdi; Natasja W. M. Van Dijk; Jakub Jaroszewicz; X. Frank Walboomers; John A. Jansen

Calcium phosphate (CaP) coatings can enhance the performance of bone implants in compromised conditions, such as osteoporosis. Therefore, this study compared non-coated vs. CaP-coated (n = 8) titanium implants in osteoporotic ovariectomized (OVX) rats. Bone volume (BV) was assessed using micro-computer tomography (micro-CT) and three-dimensional (3D) histology, in three zones from the implant surface. Bone remodeling was assessed using fluorochrome labels and osteoclast staining. Micro-CT and 3D histology showed a BV reduction in OVX animals, of respectively 22.4 and 10.5%. BV was significantly increased inside all zones around CaP coatings, especially in the inner zone of the OVX animals. Fluorochrome labels were predominantly seen when the coating was applied. Osteoclasts were mainly found in the area remote from the surface of non-coated implants in control animals. For the coated implants, osteoclasts were distributed evenly, and present in direct vicinity of the surface. In conclusion, 3D histology is a suitable technique to obtain data and insight into bone architecture around implants at relatively high resolution. Bone formation was significantly reduced in osteoporotic animals. CaP coatings resulted in a higher BV directly around implants installed in osteoporotic animals, enhanced turnover, and a shift of remodeling activity toward the implant surface.

Collaboration


Dive into the Vincent M.J.I. Cuijpers's collaboration.

Top Co-Authors

Avatar

John A. Jansen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.G.C. Wolke

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

A.A.J. Verhofstad

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jeroen J. J. P. van den Beucken

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis P. Link

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge