Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Macaulay is active.

Publication


Featured researches published by Vincent Macaulay.


American Journal of Human Genetics | 2000

Tracing European Founder Lineages in the Near Eastern mtDNA Pool

Martin B. Richards; Vincent Macaulay; Eileen Hickey; Emilce Vega; Bryan Sykes; Valentina Guida; Chiara Rengo; Daniele Sellitto; Fulvio Cruciani; Toomas Kivisild; Richard Villems; Mark G. Thomas; Serge Rychkov; Oksana Rychkov; Yuri Rychkov; Mukaddes Gölge; Dimitar Dimitrov; Emmeline W. Hill; Daniel G. Bradley; Valentino Romano; Francesco Calì; Giuseppe Vona; Andrew G. Demaine; S.S. Papiha; Costas Triantaphyllidis; Gheorghe Stefanescu; Jiři Hatina; Michele Belledi; Anna Di Rienzo; Andrea Novelletto

Founder analysis is a method for analysis of nonrecombining DNA sequence data, with the aim of identification and dating of migrations into new territory. The method picks out founder sequence types in potential source populations and dates lineage clusters deriving from them in the settlement zone of interest. Here, using mtDNA, we apply the approach to the colonization of Europe, to estimate the proportion of modern lineages whose ancestors arrived during each major phase of settlement. To estimate the Palaeolithic and Neolithic contributions to European mtDNA diversity more accurately than was previously achievable, we have now extended the Near Eastern, European, and northern-Caucasus databases to 1,234, 2, 804, and 208 samples, respectively. Both back-migration into the source population and recurrent mutation in the source and derived populations represent major obstacles to this approach. We have developed phylogenetic criteria to take account of both these factors, and we suggest a way to account for multiple dispersals of common sequence types. We conclude that (i) there has been substantial back-migration into the Near East, (ii) the majority of extant mtDNA lineages entered Europe in several waves during the Upper Palaeolithic, (iii) there was a founder effect or bottleneck associated with the Last Glacial Maximum, 20,000 years ago, from which derives the largest fraction of surviving lineages, and (iv) the immigrant Neolithic component is likely to comprise less than one-quarter of the mtDNA pool of modern Europeans.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Natural selection shaped regional mtDNA variation in humans

Dan Mishmar; Eduardo Ruiz-Pesini; Pawel Golik; Vincent Macaulay; Andrew G. Clark; Seyed H. Hosseini; Martin Brandon; Kirk Easley; Estella B. Chen; Michael D Brown; Rem I. Sukernik; Antonel Olckers; Douglas C. Wallace

Human mtDNA shows striking regional variation, traditionally attributed to genetic drift. However, it is not easy to account for the fact that only two mtDNA lineages (M and N) left Africa to colonize Eurasia and that lineages A, C, D, and G show a 5-fold enrichment from central Asia to Siberia. As an alternative to drift, natural selection might have enriched for certain mtDNA lineages as people migrated north into colder climates. To test this hypothesis we analyzed 104 complete mtDNA sequences from all global regions and lineages. African mtDNA variation did not significantly deviate from the standard neutral model, but European, Asian, and Siberian plus Native American variations did. Analysis of amino acid substitution mutations (nonsynonymous, Ka) versus neutral mutations (synonymous, Ks) (ka/ks) for all 13 mtDNA protein-coding genes revealed that the ATP6 gene had the highest amino acid sequence variation of any human mtDNA gene, even though ATP6 is one of the more conserved mtDNA proteins. Comparison of the ka/ks ratios for each mtDNA gene from the tropical, temperate, and arctic zones revealed that ATP6 was highly variable in the mtDNAs from the arctic zone, cytochrome b was particularly variable in the temperate zone, and cytochrome oxidase I was notably more variable in the tropics. Moreover, multiple amino acid changes found in ATP6, cytochrome b, and cytochrome oxidase I appeared to be functionally significant. From these analyses we conclude that selection may have played a role in shaping human regional mtDNA variation and that one of the selective influences was climate.


American Journal of Human Genetics | 1999

The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs.

Vincent Macaulay; Martin B. Richards; Eileen Hickey; Emilce Vega; Fulvio Cruciani; Valentina Guida; Rosaria Scozzari; Batsheva Bonne-Tamir; Bryan Sykes; Antonio Torroni

Variation in the human mitochondrial genome (mtDNA) is now routinely described and used to infer the histories of peoples, by means of one of two procedures, namely, the assaying of RFLPs throughout the genome and the sequencing of parts of the control region (CR). Using 95 samples from the Near East and northwest Caucasus, we present an analysis based on both systems, demonstrate their concordance, and, using additional available information, present the most refined phylogeny to date of west Eurasian mtDNA. We describe and apply a nomenclature for mtDNA clusters. Hypervariable nucleotides are identified, and the relative mutation rates of the two systems are evaluated. We point out where ambiguities remain. The identification of signature mutations for each cluster leads us to apply a hierarchical scheme for determining the cluster composition of a sample of Berber speakers, previously analyzed only for CR variation. We show that the main indigenous North African cluster is a sister group to the most ancient cluster of European mtDNAs, from which it diverged approximately 50,000 years ago.


American Journal of Human Genetics | 2009

Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock

Pedro Soares; Luca Ermini; Noel Thomson; Maru Mormina; Teresa Rito; Arne Röhl; Antonio Salas; Stephen Oppenheimer; Vincent Macaulay; Martin B. Richards

There is currently no calibration available for the whole human mtDNA genome, incorporating both coding and control regions. Furthermore, as several authors have pointed out recently, linear molecular clocks that incorporate selectable characters are in any case problematic. We here confirm a modest effect of purifying selection on the mtDNA coding region and propose an improved molecular clock for dating human mtDNA, based on a worldwide phylogeny of > 2000 complete mtDNA genomes and calibrating against recent evidence for the divergence time of humans and chimpanzees. We focus on a time-dependent mutation rate based on the entire mtDNA genome and supported by a neutral clock based on synonymous mutations alone. We show that the corrected rate is further corroborated by archaeological dating for the settlement of the Canary Islands and Remote Oceania and also, given certain phylogeographic assumptions, by the timing of the first modern human settlement of Europe and resettlement after the Last Glacial Maximum. The corrected rate yields an age of modern human expansion in the Americas at approximately 15 kya that-unlike the uncorrected clock-matches the archaeological evidence, but continues to indicate an out-of-Africa dispersal at around 55-70 kya, 5-20 ky before any clear archaeological record, suggesting the need for archaeological research efforts focusing on this time window. We also present improved rates for the mtDNA control region, and the first comprehensive estimates of positional mutation rates for human mtDNA, which are essential for defining mutation models in phylogenetic analyses.


American Journal of Human Genetics | 2002

The Making of the African mtDNA Landscape

Antonio Salas; Martin B. Richards; Tomás De la Fe; Marı́a-Victoria Lareu; Beatriz Sobrino; Paula Sánchez-Diz; Vincent Macaulay; Angel Carracedo

Africa presents the most complex genetic picture of any continent, with a time depth for mitochondrial DNA (mtDNA) lineages >100,000 years. The most recent widespread demographic shift within the continent was most probably the Bantu dispersals, which archaeological and linguistic evidence suggest originated in West Africa 3,000-4,000 years ago, spreading both east and south. Here, we have carried out a thorough phylogeographic analysis of mtDNA variation in a total of 2,847 samples from throughout the continent, including 307 new sequences from southeast African Bantu speakers. The results suggest that the southeast Bantu speakers have a composite origin on the maternal line of descent, with approximately 44% of lineages deriving from West Africa, approximately 21% from either West or Central Africa, approximately 30% from East Africa, and approximately 5% from southern African Khoisan-speaking groups. The ages of the major founder types of both West and East African origin are consistent with the likely timing of Bantu dispersals, with those from the west somewhat predating those from the east. Despite this composite picture, the southeastern African Bantu groups are indistinguishable from each other with respect to their mtDNA, suggesting that they either had a common origin at the point of entry into southeastern Africa or have undergone very extensive gene flow since.


American Journal of Human Genetics | 2002

A Back Migration from Asia to Sub-Saharan Africa Is Supported by High-Resolution Analysis of Human Y-Chromosome Haplotypes

Fulvio Cruciani; Piero Santolamazza; Peidong Shen; Vincent Macaulay; Pedro Moral; Antonel Olckers; David Modiano; Susan Holmes; Giovanni Destro-Bisol; Valentina Coia; Douglas C. Wallace; Peter J. Oefner; Antonio Torroni; Luigi Luca Cavalli-Sforza; Rosaria Scozzari; Peter A. Underhill

The variation of 77 biallelic sites located in the nonrecombining portion of the Y chromosome was examined in 608 male subjects from 22 African populations. This survey revealed a total of 37 binary haplotypes, which were combined with microsatellite polymorphism data to evaluate internal diversities and to estimate coalescence ages of the binary haplotypes. The majority of binary haplotypes showed a nonuniform distribution across the continent. Analysis of molecular variance detected a high level of interpopulation diversity (PhiST=0.342), which appears to be partially related to the geography (PhiCT=0.230). In sub-Saharan Africa, the recent spread of a set of haplotypes partially erased pre-existing diversity, but a high level of population (PhiST=0.332) and geographic (PhiCT=0.179) structuring persists. Correspondence analysis shows that three main clusters of populations can be identified: northern, eastern, and sub-Saharan Africans. Among the latter, the Khoisan, the Pygmies, and the northern Cameroonians are clearly distinct from a tight cluster formed by the Niger-Congo-speaking populations from western, central western, and southern Africa. Phylogeographic analyses suggest that a large component of the present Khoisan gene pool is eastern African in origin and that Asia was the source of a back migration to sub-Saharan Africa. Haplogroup IX Y chromosomes appear to have been involved in such a migration, the traces of which can now be observed mostly in northern Cameroon.


American Journal of Human Genetics | 2002

The fingerprint of phantom mutations in mitochondrial DNA data.

Hans-Jürgen Bandelt; Lluis Quintana-Murci; Antonio Salas; Vincent Macaulay

Phantom mutations are systematic artifacts generated in the course of the sequencing process itself. In sequenced mitochondrial DNA (mtDNA), they generate a hotspot pattern quite different from that of natural mutations in the cell. To identify the telltale patterns of a particular phantom mutation process, one first filters out the well-established frequent mutations (inferred from various data sets with additional coding region information). The filtered data are represented by their full (quasi-)median network, to visualize the character conflicts, which can be expressed numerically by the cube spectrum. Permutation tests are used to evaluate the overall phylogenetic content of the filtered data. Comparison with benchmark data sets helps to sort out suspicious data and to infer features and potential causes for the phantom mutation process. This approach, performed either in the lab or at the desk of a reviewer, will help to avoid errors that otherwise would go into print and could lead to erroneous evolutionary interpretations. The filtering procedure is illustrated with two mtDNA data sets that were severely affected by phantom mutations.


American Journal of Human Genetics | 2004

The African Diaspora: Mitochondrial DNA and the Atlantic Slave Trade

Antonio Salas; Martin B. Richards; Maria Victoria Lareu; Rosaria Scozzari; Alfredo Coppa; Antonio Torroni; Vincent Macaulay; Angel Carracedo

Between the 15th and 19th centuries ad, the Atlantic slave trade resulted in the forced movement of approximately 13 million people from Africa, mainly to the Americas. Only approximately 11 million survived the passage, and many more died in the early years of captivity. We have studied 481 mitochondrial DNAs (mtDNAs) of recent African ancestry in the Americas and in Eurasia, in an attempt to trace them back to particular regions of Africa. Our results show that mtDNAs in America and Eurasia can, in many cases, be traced to broad geographical regions within Africa, largely in accordance with historical evidence, and raise the possibility that a greater resolution may be possible in the future. However, they also indicate that, at least for the moment, considerable caution is warranted when assessing claims to be able to trace the ancestry of particular lineages to a particular locality within modern-day Africa.


Current Biology | 2010

The Archaeogenetics of Europe

Pedro Soares; Alessandro Achilli; Ornella Semino; William Davies; Vincent Macaulay; Hans-Juergen Bandelt; Antonio Torroni; Martin B. Richards

A new timescale has recently been established for human mitochondrial DNA (mtDNA) lineages, making mtDNA at present the most informative genetic marker system for studying European prehistory. Here, we review the new chronology and compare mtDNA with Y-chromosome patterns, in order to summarize what we have learnt from archaeogenetics concerning five episodes over the past 50,000 years which significantly contributed to the settlement history of Europe: the pioneer colonisation of the Upper Palaeolithic, the Late Glacial re-colonisation of the continent from southern refugia after the Last Glacial Maximum, the postglacial re-colonization of deserted areas after the Younger Dryas cold snap, the arrival of Near Easterners with an incipient Neolithic package, and the small-scale migrations along continent-wide economic exchange networks beginning with the Copper Age. The available data from uniparental genetic systems have already transformed our view of the prehistory of Europe, but our knowledge of these processes remains limited. Nevertheless, their legacy remains as sedimentary layers in the gene pool of modern Europeans, and our understanding of them will improve substantially when more mtDNAs are completely sequenced, the Y chromosome more thoroughly analysed, and haplotype blocks of the autosomal genome become amenable to phylogeographic studies.


PLOS Medicine | 2005

A critical reassessment of the role of mitochondria in tumorigenesis.

Antonio Salas; Yong-Gang Yao; Vincent Macaulay; Ana Vega; Angel Carracedo; Hans-Jürgen Bandelt

Background Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results. Methods and Findings In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis. Conclusion The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research.

Collaboration


Dive into the Vincent Macaulay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Torroni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Antonio Salas

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosaria Scozzari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel Carracedo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge