Vincent Nélis
International Student Exchange Programs
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent Nélis.
euromicro conference on real-time systems | 2012
Geoffrey Nelissen; Vandy Berten; Vincent Nélis; Joël Goossens; Dragomir Milojevic
A multiprocessor scheduling algorithm named U-EDF, was presented in [1] for the scheduling of periodic tasks with implicit deadlines. It was claimed that U-EDF is optimal for periodic tasks (i.e., it can meet all deadlines of every schedulable task set) and extensive simulations showed a drastic improvement in the number of task preemptions and migrations in comparison to state-of-the-art optimal algorithms. However, there was no proof of its optimality and U-EDF was not designed to schedule sporadic tasks. In this work, we propose a generalization of U-EDF for the scheduling of sporadic tasks with implicit deadlines, and we prove its optimality. Contrarily to all other existing optimal multiprocessor scheduling algorithms for sporadic tasks, U-EDF is not based on the fairness property. Instead, it extends the main principles of EDF so that it achieves optimality while benefiting from a substantial reduction in the number of preemptions and migrations.
trust security and privacy in computing and communications | 2011
Dakshina Dasari; Björn Andersson; Vincent Nélis; Stefan M. Petters; Arvind Easwaran; Jinkyu Lee
The current industry trend is towards using Commercially available Off-The-Shelf (COTS) based multicores for developing real-time embedded systems, as opposed to the usage of custom-made hardware. In typical implementation of such COTS-based multicores, multiple cores access the main memory via a shared bus. This often leads to contention on this shared channel, which results in an increase of the response time of the tasks. Analyzing this increased response time, considering the contention on the shared bus, is challenging on COTS-based systems mainly because bus arbitration protocols are often undocumented and the exact instants at which the shared bus is accessed by tasks are not explicitly controlled by the operating system scheduler, they are instead a result of cache misses. This paper makes three contributions towards analyzing tasks scheduled on COTS-based multicores. Firstly, we describe a method to model the memory access patterns of a task. Secondly, we apply this model to analyze the worst-case response time for a set of tasks. Although the required parameters to obtain the request profile can be obtained by static analysis, we provide an alternative method to experimentally obtain them by using performance monitoring counters (PMCs). We also compare our work against an existing approach and show that our approach outperforms it by providing tighter upper-bound on the number of bus requests generated by a task.
real-time systems symposium | 2009
Vincent Nélis; Joël Goossens; Björn Andersson
We consider the global and preemptive scheduling problem of multi-mode real-time systems upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem.We consider the global and preemptive scheduling problem of multi-mode real-time systems upon identical multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which ensure that all the expected requirements are met during every transition between every pair of operating modes of the system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan determination problem. Two Protocols for Scheduling Multi-Mode Real-Time Systems upon Identical Multiprocessor Platforms Vincent Nelis [email protected] Joel Goossens [email protected] Bjorn Andersson [email protected]
ACM Transactions in Embedded Computing Systems | 2014
Dakshina Dasari; Borislav Nikolic; Vincent Nélis; Stefan M. Petters
“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.
euromicro conference on real-time systems | 2011
Vincent Nélis; Björn Andersson; José Marinho; Stefan M. Petters
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
real-time networks and systems | 2015
Sebastian Altmeyer; Robert I. Davis; Leandro Soares Indrusiak; Claire Maiza; Vincent Nélis; Jan Reineke
In this paper, we introduce a Multicore Response Time Analysis (MRTA) framework. This framework is extensible to different multicore architectures, with various types and arrangements of local memory, and different arbitration policies for the common interconnects. We instantiate the framework for single level local data and instruction memories (cache or scratchpads), for a variety of memory bus arbitration policies, including: Round-Robin, FIFO, Fixed-Priority, Processor-Priority, and TDMA, and account for DRAM refreshes. The MRTA framework provides a general approach to timing verification for multicore systems that is parametric in the hardware configuration and so can be used at the architectural design stage to compare the guaranteed levels of performance that can be obtained with different hardware configurations. The MRTA framework decouples response time analysis from a reliance on context independent WCET values. Instead, the analysis formulates response times directly from the demands on different hardware resources.
design, automation, and test in europe | 2012
José Marinho; Vincent Nélis; Stefan M. Petters; Isabelle Puaut
In real-time systems, there are two distinct trends for scheduling task sets on unicore systems: non-preemptive and preemptive scheduling. Non-preemptive scheduling is obviously not subject to any preemption delay but its schedulability may be quite poor, whereas fully preemptive scheduling is subject to preemption delay, but benefits from a higher flexibility in the scheduling decisions. The time-delay involved by task preemptions is a major source of pessimism in the analysis of the task Worst-Case Execution Time (WCET) in real-time systems. Preemptive scheduling policies including non-preemptive regions are a hybrid solution between non-preemptive and fully preemptive scheduling paradigms, which enables to conjugate both worlds benefits. In this paper, we exploit the connection between the progression of a task in its operations, and the knowledge of the preemption delays as a function of its progression. The pessimism in the preemption delay estimation is then reduced in comparison to state of the art methods, due to the increase in information available in the analysis.
international symposium on industrial embedded systems | 2013
Dakshina Dasari; Benny Akesson; Vincent Nélis; Muhammad Ali Awan; Stefan M. Petters
COTS-based multicores are now the preferred choice for hosting embedded applications owing to their immense computational capabilities, small form factor and low power consumption. Many of these embedded applications have real-time requirements and real-time system designers must be able assess them for their predictability and provide guarantees (at design time) that they deliver the correct functional behavior within predefined time bounds. However, the underlying architecture of commercially available multicores is extremely complex and non-amenable to straight-forward timing analysis. In this paper, we highlight the architectural features leading to temporal unpredictability, which mainly involve shared hardware resources, such as buses, caches, and memories. We explore some of the existing work in timing analysis with respect to these features, identify their limitations, and present some unaddressed issues that must be dealt with to ensure safe deployment of real-time systems.
embedded and real-time computing systems and applications | 2009
Vincent Nélis; Joël Goossens
In this paper, we address the global and preemptive energy-aware scheduling problem of sporadic constrained-deadline tasks on DVFS-identical multiprocessor platforms. We propose an online slack reclamation scheme which profits from the discrepancy between the worst- and actual-case execution time of the tasks by slowing down the speed of the processors in order to save energy. Our algorithm called MORA takes into account the application-specific consumption profile of the tasks. We demonstrate that MORA does not jeopardize the system schedulability and we show by performing simulations that it can save up to 32% of energy (in average) compared to execution without using any energy-aware algorithm.
acm symposium on applied computing | 2015
José Fonseca; Vincent Nélis; Gurulingesh Raravi; Luis Miguel Pinho
Owing to the current trends for higher performance and the ever growing availability of multiprocessors in the embedded computing (EC) domain, there is nowadays a strong push towards the parallelization of modern embedded applications. Several real-time task models have recently been proposed to capture different forms of parallelism. However, they do not deal explicitly with control flow information as they assume that all the threads of a parallel task must execute every time the task is activated. In contrast, in this paper, we present a multi-DAG model where each task is characterized by a set of execution flows, each of which represents a different execution path throughout the task code and is modeled as a DAG of sub-tasks. We propose a two-step solution that computes a single synchronous DAG of servers for a task modeled by a multi-DAG and show that these servers are able to supply every execution flow of that task with the required cpu-budget so that the task can execute entirely, irrespective of the execution flow taken at run-time, while satisfying its precedence constraints. As a result, each task can be modeled by its single DAG of servers, which facilitates in leveraging the existing single-DAG schedulability analyses techniques for analyzing the schedulability of parallel tasks with multiple execution flows.