Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincent Pascoli is active.

Publication


Featured researches published by Vincent Pascoli.


Nature | 2012

Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour

Vincent Pascoli; Marc Turiault; Christian Lüscher

Drug-evoked synaptic plasticity is observed at many synapses and may underlie behavioural adaptations in addiction. Mechanistic investigations start with the identification of the molecular drug targets. Cocaine, for example, exerts its reinforcing and early neuroadaptive effects by inhibiting the dopamine transporter, thus causing a strong increase in mesolimbic dopamine. Among the many signalling pathways subsequently engaged, phosphorylation of the extracellular signal-regulated kinase (ERK) in the nucleus accumbens is of particular interest because it has been implicated in NMDA-receptor and type 1 dopamine (D1)-receptor-dependent synaptic potentiation as well as in several behavioural adaptations. A causal link between drug-evoked plasticity at identified synapses and behavioural adaptations, however, is missing, and the benefits of restoring baseline transmission have yet to be demonstrated. Here we find that cocaine potentiates excitatory transmission in D1-receptor-expressing medium-sized spiny neurons (D1R-MSNs) in mice via ERK signalling with a time course that parallels locomotor sensitization. Depotentiation of cortical nucleus accumbens inputs by optogenetic stimulation in vivo efficiently restored normal transmission and abolished cocaine-induced locomotor sensitization. These findings establish synaptic potentiation selectively in D1R-MSNs as a mechanism underlying a core component of addiction, probably by creating an imbalance between distinct populations of MSNs in the nucleus accumbens. Our data also provide proof of principle that reversal of cocaine-evoked synaptic plasticity can treat behavioural alterations caused by addictive drugs and may inspire novel therapeutic approaches involving deep brain stimulation or transcranial magnetic stimulation.


Nature | 2014

Contrasting forms of cocaine-evoked plasticity control components of relapse

Vincent Pascoli; Jean Terrier; Julie Espallergues; Emmanuel Valjent; Eoin C. O’Connor; Christian Lüscher

Nucleus accumbens neurons serve to integrate information from cortical and limbic regions to direct behaviour. Addictive drugs are proposed to hijack this system, enabling drug-associated cues to trigger relapse to drug seeking. However, the connections affected and proof of causality remain to be established. Here we use a mouse model of delayed cue-associated cocaine seeking with ex vivo electrophysiology in optogenetically delineated circuits. We find that seeking correlates with rectifying AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor transmission and a reduced AMPA/NMDA (N-methyl-d-aspartate) ratio at medial prefrontal cortex (mPFC) to nucleus accumbens shell D1-receptor medium-sized spiny neurons (D1R-MSNs). In contrast, the AMPA/NMDA ratio increases at ventral hippocampus to D1R-MSNs. Optogenetic reversal of cocaine-evoked plasticity at both inputs abolishes seeking, whereas selective reversal at mPFC or ventral hippocampus synapses impairs response discrimination or reduces response vigour during seeking, respectively. Taken together, we describe how information integration in the nucleus accumbens is commandeered by cocaine at discrete synapses to allow relapse. Our approach holds promise for identifying synaptic causalities in other behavioural disorders.


Science | 2013

Cocaine Disinhibits Dopamine Neurons by Potentiation of GABA Transmission in the Ventral Tegmental Area

Christina Bocklisch; Vincent Pascoli; Jovi C. Y. Wong; David House; Cédric Yvon; Mathias De Roo; Kelly R. Tan; Christian Lüscher

Drugs, Dopamine, and Disinhibition Drugs often change the neuronal circuitry in the brain and thereby cause a long-lasting change in behavior. Using a wide range of in vivo and in vitro techniques in mice, Bocklisch et al. (p. 1521) observed that cocaine profoundly altered dopamine neuron function and that drug-evoked synaptic plasticity in a specific set of neurons represents a crucial step in circuit remodeling. Changes in specific neuronal circuits suggest that drug-evoked synaptic plasticity facilitates drug-adaptive behavior. Drug-evoked synaptic plasticity in the mesolimbic system reshapes circuit function and drives drug-adaptive behavior. Much research has focused on excitatory transmission in the ventral tegmental area (VTA) and the nucleus accumbens (NAc). How drug-evoked synaptic plasticity of inhibitory transmission affects circuit adaptations remains unknown. We found that medium spiny neurons expressing dopamine (DA) receptor type 1 (D1R-MSNs) of the NAc project to the VTA, strongly preferring the GABA neurons of the VTA. Repeated in vivo exposure to cocaine evoked synaptic potentiation at this synapse, occluding homosynaptic inhibitory long-term potentiation. The activity of the VTA GABA neurons was thus reduced and DA neurons were disinhibited. Cocaine-evoked potentiation of GABA release from D1R-MSNs affected drug-adaptive behavior, which identifies these neurons as a promising target for novel addiction treatments.


Science | 2015

Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology.

Meaghan Creed; Vincent Pascoli; Christian Lüscher

Reversing cocaine-evoked behavior in mice Therapeutic optogenetic protocols are highly effective at reversing symptoms in animal models of neuropsychiatric disease. However, translating these protocols into the clinic is challenging because we have not yet made the technical leap required to perform effective optogenetic stimulation in primates. Creed et al. tested whether it would be possible to circumvent these challenges by avoiding the problem altogether. They adjusted an existing therapeutic approach—deep brain stimulation—to mimic an effective optogenetic stimulation protocol to treat a mouse model of cocaine addiction. Science, this issue p. 659 Activating metabotropic glutamate receptors in identified neurons has beneficial effects in a mouse model of addiction. Circuit remodeling driven by pathological forms of synaptic plasticity underlies several psychiatric diseases, including addiction. Deep brain stimulation (DBS) has been applied to treat a number of neurological and psychiatric conditions, although its effects are transient and mediated by largely unknown mechanisms. Recently, optogenetic protocols that restore normal transmission at identified synapses in mice have provided proof of the idea that cocaine-adaptive behavior can be reversed in vivo. The most efficient protocol relies on the activation of metabotropic glutamate receptors, mGluRs, which depotentiates excitatory synaptic inputs onto dopamine D1 receptor medium-sized spiny neurons and normalizes drug-adaptive behavior. We discovered that acute low-frequency DBS, refined by selective blockade of dopamine D1 receptors, mimics optogenetic mGluR-dependent normalization of synaptic transmission. Consequently, there was a long-lasting abolishment of behavioral sensitization.


Biological Psychiatry | 2011

Cyclic Adenosine Monophosphate–Independent Tyrosine Phosphorylation of NR2B Mediates Cocaine-Induced Extracellular Signal-Regulated Kinase Activation

Vincent Pascoli; Antoine Besnard; Denis Hervé; Christiane Pagès; Nicolas Heck; Jean-Antoine Girault; Jocelyne Caboche; Peter Vanhoutte

BACKGROUND Activation of the extracellular signal-regulated kinase (ERK) in the striatum is crucial for long-term behavioral alterations induced by drugs of abuse. In response to cocaine, ERK phosphorylation (i.e., activation) is restricted to medium-sized spiny neurons expressing dopamine D1 receptor (D1R) and depends on a concomitant stimulation of D1R and glutamate N-methyl-D-aspartate receptor (NMDAR). However, the mechanisms responsible for this activation, especially the respective contribution of D1R and NMDAR, remain unknown. METHODS We studied striatal neurons in culture stimulated with D1R agonist and/or glutamate and wild-type or genetically modified mice treated with cocaine. Biochemical, immunohistochemical, and imaging studies were performed. Mice were also subjected to behavioral experiments. RESULTS Stimulation of D1R cannot activate ERK by itself but potentiates glutamate-mediated calcium influx through NMDAR that is responsible for ERK activation. Potentiation of NMDAR by D1R depends on a cyclic adenosine monophosphate-independent signaling pathway, which involves tyrosine phosphorylation of the NR2B subunit of NMDAR by Src family kinases. We also demonstrate that the D1R/Src family kinases/NR2B pathway is responsible for ERK activation by cocaine in vivo. Inhibition of this pathway abrogates cocaine-induced locomotor sensitization and conditioned place preference. CONCLUSIONS Our results show that potentiation of NR2B-containing NMDAR by D1R is necessary and sufficient to trigger cocaine-induced ERK activation. They highlight a new cyclic adenosine monophosphate-independent pathway responsible for the integration of dopamine and glutamate signals by the ERK cascade in the striatum and for long-term behavioral alterations induced by cocaine.


Neuron | 2015

Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction

Vincent Pascoli; Jean Terrier; Agnès Hiver; Christian Lüscher

The factors causing the transition from recreational drug consumption to addiction remain largely unknown. It has not been tested whether dopamine (DA) is sufficient to trigger this process. Here we use optogenetic self-stimulation of DA neurons of the ventral tegmental area (VTA) to selectively mimic the defining commonality of addictive drugs. All mice readily acquired self-stimulation. After weeks of abstinence, cue-induced relapse was observed in parallel with a potentiation of excitatory afferents onto D1 receptor-expressing neurons of the nucleus accumbens (NAc). When the mice had to endure a mild electric foot shock to obtain a stimulation, some stopped while others persevered. The resistance to punishment was associated with enhanced neural activity in the orbitofrontal cortex (OFC) while chemogenetic inhibition of the OFC reduced compulsivity. Together, these results show that stimulating VTA DA neurons induces behavioral and cellular hallmarks of addiction, indicating sufficiency for the induction and progression of the disease.


Neuron | 2015

Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding

Eoin C. O’Connor; Yves Kremer; Sandrine Lefort; Masaya Harada; Vincent Pascoli; Clément Rohner; Christian Lüscher

Feeding satisfies metabolic need but is also controlled by external stimuli, like palatability or predator threat. Nucleus accumbens shell (NAcSh) projections to the lateral hypothalamus (LH) are implicated in mediating such feeding control, but the neurons involved and their mechanism of action remain elusive. We show that dopamine D1R-expressing NAcSh neurons (D1R-MSNs) provide the dominant source of accumbal inhibition to LH and provide rapid control over feeding via LH GABA neurons. In freely feeding mice, D1R-MSN activity reduced during consumption, while their optogenetic inhibition prolonged feeding, even in the face of distracting stimuli. Conversely, activation of D1R-MSN terminals in LH was sufficient to abruptly stop ongoing consumption, even during hunger. Direct inhibition of LH GABA neurons, which received input from D1R-MSNs, fully recapitulated these findings. Together, our study resolves a feeding circuit that overrides immediate metabolic need to allow rapid consumption control in response to changing external stimuli. VIDEO ABSTRACT.


Neuropsychopharmacology | 2007

Quantitative Changes in G α olf Protein Levels, but not D1 Receptor, Alter Specifically Acute Responses to Psychostimulants

Jean-Christophe Corvol; Emmanuel Valjent; Vincent Pascoli; Aurélie Robin; Alexandre Stipanovich; Robert R. Luedtke; Leonardo Belluscio; Jean-Antoine Girault; Denis Hervé

Striatal dopamine D1 receptors (D1R) are coupled to adenylyl cyclase through Gαolf. Although this pathway is involved in important brain functions, the consequences of quantitative alterations of its components are not known. We explored the biochemical and behavioral responses to cocaine and D-amphetamine (D-amph) in mice with heterozygous mutations of genes encoding D1R and Gαolf (Drd1a+/− and Gnal+/−), which express decreased levels of the corresponding proteins in the striatum. Dopamine-stimulated cAMP production in vitro and phosphorylation of AMPA receptor GluR1 subunit in response to D-amph in vivo were decreased in Gnal+/−, but not Drd1a+/− mice. Acute locomotor responses to D1 agonist SKF81259, D-amph and cocaine were altered in Gnal+/− mice, and not in Drd1a+/− mice. This haploinsufficiency showed that Gαolf but not D1R protein levels are limiting for D1R-mediated biochemical and behavioral responses. Gnal+/− mice developed pronounced locomotor sensitization and conditioned locomotor responses after repeated injections of D-amph (2 mg/kg) or cocaine (20 mg/kg). They also developed normal D-amph-conditioned place preference. The D1R/cAMP pathway remained blunted in repeatedly treated Gnal+/− mice. In contrast, D-amph-induced ERK activation was normal in the striatum of these mice, possibly accounting for the normal development of long-lasting behavioral responses to psychostimulants. Our results clearly dissociate biochemical mechanisms involved in acute and delayed behavioral effects of psychostimulants. They identify striatal levels of Gαolf as a key factor for acute responses to psychostimulants and suggest that quantitative alterations of its expression may alter specific responses to drugs of abuse, or possibly other behavioral responses linked to dopamine function.


The Journal of Neuroscience | 2007

A TAT–DEF–Elk-1 Peptide Regulates the Cytonuclear Trafficking of Elk-1 and Controls Cytoskeleton Dynamics

Jérémie Lavaur; Frédéric Bernard; Pierre Trifilieff; Vincent Pascoli; Vincent Kappes; Christiane Pagès; Peter Vanhoutte; Jocelyne Caboche

The transcription factor Elk-1 plays a key role in cell differentiation, proliferation and apoptosis. This role is thought to arise from its phosphorylation by activated extracellular signal-regulated kinases (ERKs), a critical posttranslational event for the transcriptional activity of the ternary complex composed of Elk-1 and a dimer of serum response factor (SRF) at the serum response element (SRE) regulatory site of transcription. In addition to its nuclear localization, Elk-1 is found in the dendrites and soma of neuronal cells and recent evidence implicate a cytoplasmic proapoptotic function of Elk-1, via its association with the mitochondrial permeability transition pore complex. Thus, the nuclear versus cytoplasmic localization of Elk-1 seems to be crucial for its biological function. In this study we show that the excitatory neurotransmitter, glutamate, induces an ERK-dependent Elk-1 activation and nuclear relocalization. We demonstrate that Elk-1 phosphorylation on Ser383/389 has a dual function and triggers both Elk-1 nuclear translocation and SRE-dependent gene expression. Mutating these sites into inactive residues or using a synthetic penetrating peptide (TAT–DEF–Elk-1), which specifically interferes with the DEF docking domain of Elk-1, prevents Elk-1 nuclear translocation without interfering with ERK nor MSK1 (mitogen- and stress-activated protein kinase 1), a CREB kinase downstream from ERK- activation. This results in a differential regulation of glutamate-induced IEG regulation when compared with classical inhibitors of the ERK pathway. Using the TAT–DEF–Elk-1 peptide or the dominant-negative version of Elk-1, we show that Elk-1 phosphorylation controls dendritic elongation, SRF and Actin expression levels as well as cytoskeleton dynamics.


Molecular Psychiatry | 2014

D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses

Emma Cahill; Vincent Pascoli; Pierre Trifilieff; D Savoldi; V Kappès; Christian Lüscher; Jocelyne Caboche; Peter Vanhoutte

Convergent dopamine and glutamate signalling onto the extracellular signal-regulated kinase (ERK) pathway in medium spiny neurons (MSNs) of the striatum controls psychostimulant-initiated adaptive processes underlying long-lasting behavioural changes. We hypothesised that the physical proximity of dopamine D1 (D1R) and glutamate NMDA (NMDAR) receptors, achieved through the formation of D1R/NMDAR complexes, may act as a molecular bridge that controls the synergistic action of dopamine and glutamate on striatal plasticity and behavioural responses to drugs of abuse. We found that concomitant stimulation of D1R and NMDAR drove complex formation between endogenous D1R and the GluN1 subunit of NMDAR. Conversely, preventing D1R/GluN1 association with a cell-permeable peptide (TAT-GluN1C1) left individual D1R and NMDAR-dependent signalling intact, but prevented D1R-mediated facilitation of NMDAR–calcium influx and subsequent ERK activation. Electrophysiological recordings in striatal slices from mice revealed that D1R/GluN1 complexes control the D1R-dependent enhancement of NMDAR currents and long-term potentiation in D1R-MSN. Finally, intra-striatal delivery of TAT-GluN1C1 did not affect acute responses to cocaine but reduced behavioural sensitization. Our findings uncover D1R/GluN1 complexes as a major substrate for the dopamine–glutamate interaction in MSN that is usurped by addictive drugs to elicit persistent behavioural alterations. They also identify D1R/GluN1 complexes as molecular targets with a therapeutic potential for the vast spectrum of psychiatric diseases associated with an imbalance between dopamine and glutamate transmission.

Collaboration


Dive into the Vincent Pascoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane Pagès

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Kappes

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérémie Lavaur

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge