Meaghan Creed
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meaghan Creed.
Science | 2015
Meaghan Creed; Vincent Pascoli; Christian Lüscher
Reversing cocaine-evoked behavior in mice Therapeutic optogenetic protocols are highly effective at reversing symptoms in animal models of neuropsychiatric disease. However, translating these protocols into the clinic is challenging because we have not yet made the technical leap required to perform effective optogenetic stimulation in primates. Creed et al. tested whether it would be possible to circumvent these challenges by avoiding the problem altogether. They adjusted an existing therapeutic approach—deep brain stimulation—to mimic an effective optogenetic stimulation protocol to treat a mouse model of cocaine addiction. Science, this issue p. 659 Activating metabotropic glutamate receptors in identified neurons has beneficial effects in a mouse model of addiction. Circuit remodeling driven by pathological forms of synaptic plasticity underlies several psychiatric diseases, including addiction. Deep brain stimulation (DBS) has been applied to treat a number of neurological and psychiatric conditions, although its effects are transient and mediated by largely unknown mechanisms. Recently, optogenetic protocols that restore normal transmission at identified synapses in mice have provided proof of the idea that cocaine-adaptive behavior can be reversed in vivo. The most efficient protocol relies on the activation of metabotropic glutamate receptors, mGluRs, which depotentiates excitatory synaptic inputs onto dopamine D1 receptor medium-sized spiny neurons and normalizes drug-adaptive behavior. We discovered that acute low-frequency DBS, refined by selective blockade of dopamine D1 receptors, mimics optogenetic mGluR-dependent normalization of synaptic transmission. Consequently, there was a long-lasting abolishment of behavioral sensitization.
Frontiers in Behavioral Neuroscience | 2014
Meaghan Creed; Niels R. Ntamati; Kelly R. Tan
The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA) and the nucleus accumbens (NAc) as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to dopamine (DA) neurons, the VTA also contains approximately 30% γ-aminobutyric acid (GABA) neurons. The task of signaling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs), a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioral level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs) to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.
Current Opinion in Neurobiology | 2013
Meaghan Creed; Christian Lüscher
Addictive drugs such as cocaine induce synaptic plasticity in the ventral tegmental area and its projection areas, which may represent the cellular correlate of an addiction trace. Cocaine induces changes in excitatory transmission primarily in the VTA, which persists for days after a single exposure. These initial alterations in synaptic transmission represent a metaplasticity that is permissive for late stages of remodeling throughout the mesocorticolimbic circuitry, specifically in the NAc. Specific synaptic and cellular changes in the NAc persist following prolonged exposure to cocaine, and this remodeling may contribute to altered behavior. By manipulating synaptic activity in the NAc, it may be possible to reverse pathological synaptic transmission and its associated abnormal behavior following exposure to addictive drugs.
The Journal of Neuroscience | 2012
Meaghan Creed; Clement Hamani; Alanna Bridgman; Paul J. Fletcher; José N. Nobrega
Mechanisms whereby deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) reduces dyskinesias remain largely unknown. Using vacuous chewing movements (VCMs) induced by chronic haloperidol as a model of tardive dyskinesia (TD) in rats, we confirmed the antidyskinetic effects of DBS applied to the STN or entopeduncular nucleus (EPN, the rodent homolog of the GPi). We conducted a series of experiments to investigate the role of serotonin (5-HT) in these effects. We found that neurotoxic lesions of the dorsal raphe nuclei (DRN) significantly decreased HAL-induced VCMs. Acute 8-OH-DPAT administration, under conditions known to suppress raphe neuronal firing, also reduced VCMs. Immediate early gene mapping using zif268 in situ hybridization revealed that STN-DBS inhibited activity of DRN and MRN neurons. Microdialysis experiments indicated that STN-DBS decreased 5-HT release in the dorsolateral caudate–putamen, an area implicated in the etiology of HAL-induced VCMs. DBS applied to the EPN also suppressed VCMs but did not alter 5-HT release or raphe neuron activation. While these findings suggested a role for decreased 5-HT release in the mechanisms of STN DBS, further microdialysis experiments showed that when the 5-HT lowering effects of STN DBS were prevented by pretreatment with fluoxetine or fenfluramine, the ability of DBS to suppress VCMs remained unaltered. These results suggest that EPN- and STN-DBS have different effects on the 5-HT system. While decreasing 5-HT function is sufficient to suppress HAL-induced VCMs, 5-HT decrease is not necessary for the beneficial motor effects of DBS in this model.
Behavioural Brain Research | 2013
Lily R. Aleksandrova; Meaghan Creed; Paul J. Fletcher; Daniela Sabbatini da Silva Lobo; Clement Hamani; José N. Nobrega
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option for the motor symptoms of Parkinsons disease (PD). However, several recent studies have found an association between STN-DBS and increased impulsivity. Currently, it is not clear whether the observed increase in impulsivity results from STN-DBS per se, or whether it involves an interaction with the underlying PD neuropathology and/or intake of dopaminergic drugs. We investigated the effects of STN-DBS on performance of intact rats on two tasks measuring impulsive responding: a novel rat gambling task (rGT) and a differential reinforcement of low rate responding (DRL20s) schedule. Following initial behavioural training, animals received electrode implantation into the STN (n=24) or sham surgery (n=24), and were re-tested on their assigned behavioural task, with or without STN-DBS. Bilateral STN-DBS administered for two hours immediately prior to testing, had no effects on rGT choice behaviour or on DRL response inhibition (p>0.05). However, STN-DBS significantly increased premature responding in the rGT task (p=0.0004), an effect that took several sessions to develop and persisted in subsequent trials when no stimulation was given. Consistent with the notion of distinct facets of impulsivity with unique neurochemical underpinnings, we observed differential effects of STN-DBS in the two tasks employed. These results suggest that STN-DBS in the absence of parkinsonism may not lead to a general loss of inhibitory control, but may instead affect impulsivity under specific conditions.
Current Opinion in Neurobiology | 2015
Christian Lüscher; Vincent Pascoli; Meaghan Creed
Optogenetics has enabled the characterization of the neural circuits involved in brain diseases, such as addiction, depression or obsessive compulsive disorders. Recently, the technique has also been used to propose blueprints for novel treatments aiming at restoring circuit function through the reversal of specific forms of synaptic plasticity. Since optogenetic manipulations cannot be immediately translated to human use, we argue that an intermediate strategy could consist of emulating optogenetic protocols with deep brain stimulation (DBS). This translational path to rational, optogenetically inspired DBS protocols starts by refining existing approaches and carries the hope to expand to novel indications.
European Neuropsychopharmacology | 2011
Meaghan Creed; Clement Hamani; José N. Nobrega
Deep brain stimulation (DBS) has recently emerged as a potential intervention for treatment-resistant tardive dyskinesia (TD). Despite promising case reports, no consensus exists as yet regarding optimal stimulation parameters or neuroanatomical target for DBS in TD. Here we report the use of DBS in an animal model of TD. We applied DBS (100 μA) acutely to the entopeduncular nucleus (EPN) or subthalamic nucleus (STN) in rats with well established vacuous chewing movements (VCMs) induced by 12 weeks of haloperidol (HAL) treatment. Stimulation of the STN or EPN resulted in significant reductions in VCM counts at frequencies of 30, 60 or 130 Hz. In the STN DBS groups, effects were significantly more pronounced at 130 Hz than at lower frequencies, whereas at the EPN the three frequencies were equipotent. Unilateral stimulation at 130 Hz was also effective when applied to either nucleus. These results suggest that stimulation of either the EPN or STN significantly alleviates oral dyskinesias induced by chronic HAL. The chronic HAL VCM model preparation may be useful to explore mechanisms underlying DBS effects in drug-induced dyskinesias.
Nature Methods | 2017
Dongmin Lee; Meaghan Creed; Kanghoon Jung; Thomas Stefanelli; Daniel J. Wendler; Won Chan Oh; Neymi Layne Mignocchi; Christian Lüscher; Hyung Bae Kwon
Few tools exist to visualize and manipulate neurons that are targets of neuromodulators. We present iTango, a light- and ligand-gated gene expression system based on a light-inducible split tobacco etch virus protease. Cells expressing the iTango system exhibit increased expression of a marker gene in the presence of dopamine and blue-light exposure, both in vitro and in vivo. We demonstrated the iTango system in a behaviorally relevant context, by inducing expression of optogenetic tools in neurons under dopaminergic control during a behavior of interest. We thereby gained optogenetic control of these behaviorally relevant neurons. We applied the iTango system to decipher the roles of two classes of dopaminergic neurons in the mouse nucleus accumbens in a sensitized locomotor response to cocaine. Thus, the iTango platform allows for control of neuromodulatory circuits in a genetically and functionally defined manner with spatial and temporal precision.
European Neuropsychopharmacology | 2012
Meaghan Creed; Clement Hamani; José N. Nobrega
Deep brain stimulation (DBS) has been extensively used in Parkinsons disease and is also currently being investigated in tardive dyskinesia (TD), a movement disorder induced by chronic treatment with antipsychotic drugs such as haloperidol (HAL). In rodents, vacuous chewing movements (VCMs) following chronic HAL administration are suggested to model orofacial dyskinesias in TD. We show that 60 min of DBS (100 μA, 90 μs, 130 Hz) applied to the entopeduncular (EPN) or subthalamic (STN) nuclei significantly decreases HAL-induced VCMs. Using zif268 as a neural activity marker, we found that in HAL-treated animals EPN stimulation increased zif268 mRNA levels in the globus pallidus (+65%) and substantia nigra compacta (+62%) and reticulata (+76%), while decreasing levels in the motor cortex and throughout the thalamus. In contrast, after STN DBS zif268 levels in HAL-treated animals decreased in all basal ganglia structures, thalamus and motor cortex (range: 29% in the ventrolateral caudate-putamen to 100% in the EPN). Local tissue inactivation by muscimol injections into the STN or EPN also reduced VCMs, but to a lesser degree than DBS. When applied to the EPN muscimol decreased zif268 levels in substantia nigra (-29%), whereas STN infusions did not result in significant zif268 changes in any brain area. These results confirm the effectiveness of DBS in reducing VCMs and suggest that tissue inactivation does not fully account for DBS effects in this preparation. The divergent effects of STN vs. EPN manipulations on HAL-induced zif268 changes suggest that similar behavioral outcomes of DBS in these two areas may involve different neuroanatomical mechanisms.
Behavioural Pharmacology | 2015
Christina N. Nona; Meaghan Creed; Clement Hamani; José N. Nobrega
The behavioural effects of high-frequency electrical stimulation (HFS) are often similar to the effects of lesions, with the advantage of being reversible. The present study examined the effects of HFS of the nucleus accumbens (NAc), an area that has been shown to be important for sensitization to several psychostimulants, on the development and expression of EtOH sensitization. Male DBA/2 mice received five biweekly injections of EtOH (2.2 g/kg, intraperitoneally) or saline (SAL) immediately before assessments of locomotor activity (LMA). For some of the mice, each EtOH or SAL injection was preceded by 2 h of bilateral NAc HFS, whereas the remaining mice received no stimulation. Seven days after the last injection, LMA was again measured after the mice received a challenge dose of EtOH (1.8 g/kg, intraperitoneally) or SAL, either preceded or not preceded by 2 h of HFS. Mice receiving NAc HFS before EtOH injections during the sensitization period showed progressive increases in LMA that were not different from the LMA scores of EtOH-injected mice which had received no HFS. However, when the latter group was subsequently challenged after receiving HFS, a strong suppression of LMA was observed, in comparison with their own previous LMA scores (-72%) and compared with EtOH-sensitized groups challenged in the absence of HFS (-70%). A separate cohort of mice that were surgically implanted but not stimulated showed a robust EtOH sensitization response that did not differ from that of EtOH-treated mice without electrodes, demonstrating that HFS behavioural effects were not merely a result of the presence of electrodes in the NAc. These results suggest that NAc HFS may have different effects at different stages of the EtOH sensitization process, specifically suppressing expression, but not the development of EtOH sensitization. This pattern of distinct effects of NAc manipulations on different aspects of sensitization is similar to what has been reported for other drugs of abuse, suggesting a commonality of mechanisms. Our findings also suggest that the sensitization may provide a useful paradigm for the investigation of mechanisms of clinical effectiveness of HFS in humans.