Vincent Santucci
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent Santucci.
Neuropsychopharmacology | 2007
Philippe Pichat; Olivier Bergis; Jean-Paul Terranova; Alexandre Urani; Christine Duarte; Vincent Santucci; Christiane Gueudet; Carole Voltz; Régis Steinberg; Jeanne Stemmelin; Florence Oury-Donat; Patrick Avenet; Guy Griebel; Bernard Scatton
SSR180711 (4-bromophenyl 1,4diazabicyclo(3.2.2) nonane-4-carboxylate, monohydrochloride) is a selective α7 nicotinic receptor (n-AChR) partial agonist. Based on the purported implication of this receptor in cognitive deficits associated with schizophrenia, the present study assessed efficacy of SSR180711 (i.p. and p.o.) in different types of learning and memory involved in this pathology. SSR180711 enhanced episodic memory in the object recognition task in rats and mice (MED: 0.3 mg/kg), an effect mediated by the α7 n-AChR, as it was no longer seen in mice lacking this receptor. Efficacy was retained after repeated treatment (eight administrations over 5 days, 1 mg/kg), indicating lack of tachyphylaxia. SSR180711 also reversed (MED: 0.3 mg/kg) MK-801-induced deficits in retention of episodic memory in rats (object recognition). The drug reversed (MED: 0.3 mg/kg) selective attention impaired by neonatal phencyclidine (PCP) treatment and restored MK-801- or PCP-induced memory deficits in the Morris or linear maze (MED: 1–3 mg/kg). In neurochemical and electrophysiological correlates of antipsychotic drug action, SSR180711 increased extracellular levels of dopamine in the prefrontal cortex (MED: 1 mg/kg) and enhanced (3 mg/kg) spontaneous firing of retrosplenial cortex neurons in rats. Selectivity of SSR180711 was confirmed as these effects were abolished by methyllycaconitine (3 mg/kg, i.p. and 1 mg/kg, i.v., respectively), a selective α7 n-AChR antagonist. Additional antidepressant-like properties of SSR180711 were demonstrated in the forced-swimming test in rats (MED: 1 mg/kg), the maternal separation-induced ultrasonic vocalization paradigm in rat pups (MED: 3 mg/kg) and the chronic mild stress procedure in mice (10 mg/kg o.d. for 3 weeks). Taken together, these findings characterize SSR180711 as a promising new agent for the treatment of cognitive symptoms of schizophrenia. The antidepressant-like properties of SSR180711 are of added interest, considering the high prevalence of depressive symptoms in schizophrenic patients.
Neuropsychopharmacology | 2005
Ronan Depoortère; Gihad Dargazanli; Genevieve Estenne-Bouhtou; Annick Coste; Christophe Lanneau; Christophe Desvignes; Martine Poncelet; Michel Héaulme; Vincent Santucci; Michel Decobert; Annie Cudennec; Carolle Voltz; Denis Boulay; Jean Paul Terranova; Jeanne Stemmelin; Pierre Roger; Benoit Marabout; Mireille Sevrin; Xavier Vigé; Bruno Biton; Régis Steinberg; Dominique Françon; Richard Alonso; Patrick Avenet; Florence Oury-Donat; Ghislaine Perrault; Guy Griebel; Pascal George; Philippe Soubrie; Bernard Scatton
Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 μM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10–30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1–3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
Neuropsychopharmacology | 2007
Bruno Biton; Olivier Bergis; Frederic Galli; Alain Nedelec; Alistair Lochead; Samir Jegham; Danielle Godet; Christophe Lanneau; Raphaël Santamaria; Françoise Chesney; Jacques Léonardon; Patrick Granger; Marc Williams Debono; Georg Andrees Bohme; Frédéric Sgard; François Besnard; David R. Graham; Annick Coste; André Oblin; Olivier Curet; Xavier Vigé; Corinne Voltz; Liliane Rouquier; J. Souilhac; Vincent Santucci; Christiane Gueudet; Dominique Françon; Régis Steinberg; Guy Griebel; Florence Oury-Donat
In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective α7 acetylcholine nicotinic receptor (n-AChRs) partial agonist. SSR180711 displays high affinity for rat and human α7 n-AChRs (Ki of 22±4 and 14±1 nM, respectively). Ex vivo 3[H]α-bungarotoxin binding experiments demonstrate that SSR180711 rapidly penetrates into the brain (ID50=8 mg/kg p.o.). In functional studies performed with human α7 n-AChRs expressed in Xenopus oocytes or GH4C1 cells, the compound shows partial agonist effects (intrinsic activity=51 and 36%, EC50=4.4 and 0.9 μM, respectively). In rat cultured hippocampal neurons, SSR180711 induced large GABA-mediated inhibitory postsynaptic currents and small α-bungarotoxin sensitive currents through the activation of presynaptic and somato-dendritic α7 n-AChRs, respectively. In mouse hippocampal slices, the compound increased the amplitude of both glutamatergic (EPSCs) and GABAergic (IPSCs) postsynaptic currents evoked in CA1 pyramidal cells. In rat and mouse hippocampal slices, a concentration of 0.3 μM of SSR180711 increased long-term potentiation (LTP) in the CA1 field. Null mutation of the α7 n-AChR gene totally abolished SSR180711-induced modulation of EPSCs, IPSCs and LTP in mice. Intravenous administration of SSR180711 strongly increased the firing rate of single ventral pallidum neurons, extracellularly recorded in anesthetized rats. In microdialysis experiments, administration of the compound (3–10 mg/kg i.p.) dose-dependently increased extracellular acetylcholine (ACh) levels in the hippocampus and prefrontal cortex of freely moving rats. Together, these results demonstrate that SSR180711 is a selective and partial agonist at human, rat and mouse α7 n-AChRs, increasing glutamatergic neurotransmission, ACh release and LTP in the hippocampus.
Life Sciences | 1996
Vincent Santucci; Jean Jacques Storme; Philippe Soubrie; Gérard Le Fur
The effects of the central (CB1) cannabinoid receptor antagonist SR 141716A on the sleep-waking cycle were investigated in freely-moving rats using time scoring and power spectral analysis of the electroencephalogram (EEG). Over a 4-hour recording period, SR 141716A (0.1, 0.3, 1, 3, and 10 mg/kg I.P.) dose-dependently increased the time spent in wakefulness at the expense of slow-wave sleep (SWS) and rapid eye movement sleep (REMS), delayed the occurrence of REMS but did not change the mean duration of REMS episodes. Moreover, the compound induced no change in motor behavior. At the efficient dose of 3 mg/kg I.P., SR 141716A reduced the spectral power of the EEG signals typical of SWS but did not affect those of wakefulness. Taken together, these results demonstrate that the EEG effects of SR 141716A reflect arousal-enhancing properties. In addition, the present study suggests that an endogenous cannabinoid-like system is involved in the control of the sleep-waking cycle.
Neuroreport | 1995
Christiane Gueudet; Vincent Santucci; Murielle Rinaldi-Carmona; Philippe Soubrie; Gérard Le Fur
CB1 receptors and their putative natural ligand anandamide, have been tentatively involved in the control of midbrain extrapyramidal function. Electrophysiological activity of dopamine neurones was measured after acute and repeated administration of the CB1 receptor antagonist SR 141716A (0.3-3 mg kg-1) in rats. Acute SR 141716A increased A9, but not A10 cell population response without affecting either their spontaneous firing rate or apomorphine-induced rate inhibition and prevented amphetamine-induced inhibition of A9, but not of A10 cell firing. After repeated administration SR 141716A (1 or 5 mg kg-1) decreased population response of A9 cells, which was reversed by apomorphine. These results suggest that CB1 receptor blockade by SR 141716A interrupts a cannabinoid-like endogenous tone controlling extrapyramidal function.
European Journal of Pharmacology | 1993
Vincent Santucci; Christiane Gueudet; Xavier Emonds-Alt; Jean-Claude Breliere; Philippe Soubrie; Gérard Le Fur
Extracellular recordings were made in the thalamic posterior nuclear group of anesthetized rats to study the effects of SR48968, a non-peptide NK2 receptor antagonist, on the responses evoked by thermal or mechanical nociceptive cutaneous stimulation. SR48968 (0.125-0.5 mg/kg, i.v. route) inhibited the responses to thermal stimulation while being ineffective on mechanically evoked responses in doses up to 2 mg/kg i.v. This effect was stereoselective since SR48965, the (R) enantiomer of SR48968 with a 2000-fold lower affinity for NK2 receptors, did not modify thermally evoked responses at a dose of 1 mg/kg i.v. These results support the notion that NK2 receptors are involved in thermal nociception.
Synapse | 1999
Christiane Gueudet; Vincent Santucci; Philippe Soubrie; Gérard Le Fur
In vivo extracellular recording techniques were used to investigate the effects of neurokinin3 (NK3) receptor blockade on the pharmacological activation of midbrain dopamine (DA) neurons in the guinea pig substantia nigra (A9) and ventral tegmental area (A10). The number of spontaneously active DA cells (population response) was largely increased in A10 and A9 by acute administration of haloperidol (1 and 0.5 mg/kg i.p., respectively) and this effect was dose‐dependently prevented in both areas by the selective NK3 receptor antagonist SR142801 (0.3, 1, 3, and 1, 3, 10 mg/kg i.p., respectively). This compound, which was totally inactive by itself, also antagonized the increase of population response induced in A10 cells by the neurotensin receptor antagonist SR142948 (1 mg/kg i.p.) and in A9 cells by the NK2 receptor antagonist SR144190 (1 mg/kg i.p.). None of the effects of SR142801 were reproduced by SR142806, its (R)‐enantiomer with 240‐fold lower affinity for NK3 receptors. In addition, neither SR144190 (0.3 mg/kg i.p.) nor the NK1 receptor antagonist GR205171 (1 mg/kg i.p.) affected the haloperidol‐induced response. The antagonistic effects of SR142801 (3 mg/kg i.p.) were also observed on the depolarization block‐related decrease of A10 cell population response evoked by repeated administration (22 days) of haloperidol. Finally, SR142801 (3 mg/kg i.p.) prevented depolarization block induced in A10 cells by acute co‐administration of SR142948 and haloperidol, both on population response and on single cell firing. These results on pharmacologically induced activation and depolarization block of dopamine neurons suggest that NK3 receptors play a key role in the midbrain DA function, presumably through activation by neurokinin B. Synapse 33:71–79, 1999.
Synapse | 1997
Vincent Santucci; Christiane Gueudet; Régis Steinberg; Gérard Le Fur; Philippe Soubrie
In order to further assess the role of endogenous neurotensin on midbrain dopaminergic neuronal function, the effects of the selective neurotensin receptor antagonists SR 48692 and SR 48527 were investigated on the number of spontaneously active A9 and A10 dopaminergic neurons in rats. Single intraperitoneal administration of SR 48692 (0.1–3 mg/kg) dose‐dependently increased the number of active A10, but not A9 cells. SR 48527 (1 mg/kg) had a similar profile, but not SR 49711, its low affinity R‐enantiomer, indicating that the effects observed were mediated through neurotensin receptor blockade. Five‐week treatment with SR 48692 (3 mg/kg/day) produced a significant decrease of the number of active A10, but not A9 cells, which was reversed by apomorphine, suggesting that these cells were under depolarization block. Single co‐administration of inactive doses of SR 48692 (0.1 mg/kg) and haloperidol (0.0625 mg/kg) significantly increased the number of active A10 cells. Conversely, co‐administered active doses of SR 48692 or SR 48527 and haloperidol (1 and 0.25 mg/kg, respectively) induced an apomorphine‐sensitive decrease of the number of A10 active cells. Finally, SR 48692 (10 mg/kg) modified neither accumbal nor cortical basal DA release. Local micro‐injection of SR 48692 (10‐11–10‐9 M), but not that of SR 49711 (10‐9 M), into the prefrontal cortex, increased the number of active A10 cells in a concentration‐dependent manner. These results suggest that neurotensin receptor blockade counteracts a tonic inhibitory regulation by endogenous neurotensin of mesolimbic dopaminergic function and indicate that the prefrontal cortex is critically involved in this regulation. Synapse 26:370–380, 1997.
Naunyn-schmiedebergs Archives of Pharmacology | 1989
Vincent Santucci; Michèle Fournier; Paul Worms; Peter Keane; Kathleen Biziere
SummaryIn order to assess the effects of inverse benzodiazepine agonists and antagonists on brain function, computerized EEG (CEEG) analysis was performed in rats following the i. p. administration of SR 95195 (7-phenyl-3-methyl-1,2,4 triazolo-[4,3-b]pyridazine) and CGS 8216 (2-phenylpyrazolo-[4,3c]-quinoline-3-[5H]-one) two benzodiazepine receptor inverse agonists (BRIAGs) and of flumazepil (Ro 15-1788), a benzodiazepine receptor antagonist (BRANT). The EEG effects of SR 95195 (3, 10, 30 and 60 mg/kg), CGS 8216 (10 and 30 mg/kg) and flumazepil (3, 10, 30 and 60 mg/kg) were compared to those of the psychostimulant drugs DL-amphetamine (0.1, 0.3 and 1 mg/kg), and caffeine (10 and 30 mg/kg) and those of aniracetam (100 and 300 mg/kg), a nootropic pyrrolidone derivative. The CEEG profiles of SR 95195, CGS 8216 and flumazepil were mainly characterized by a power increase in the 20–32 Hz frequency range and by a power reduction in the 8–16 Hz range. These effects were quite similar to those of the psychostimulants DL-amphetamine and caffeine as well as to those of the nootropic aniracetam. Other psychotropic drugs with CNS-depressant properties, namely diazepam (10 mg/kg p. o.), pentobarbital (30 mg/kg p. o.), chlorpromazine (10 mg/kg i.p.) and imipramine (10 mg/kg i.p.) induced quite different EEG power modifications. These results show that BRIAGs and BRANTs possess a marked intrinsic activity at the central level and suggest that this activity is CNS-activating in nature.
Psychopharmacology | 1985
Vincent Santucci; Michèle Fournier; Peter Keane; Jacques Simiand; Jean-Claude Michaud; Michel Morre; Kathleen Biziere
In order to validate a new animal model predictive of the profile of antiepileptic drugs, we studied the antagonism by standard antiepileptics of the EEG modifications induced by low-speed IV infusion of pentylenetetrazol (PTZ) in rats. The activity of the drugs was measured by their effects on temporal characteristics of the PTZ-induced EEG paroxysms. Most compounds had moderate to potent anti-PTZ effects, as shown by the changes in the EEG temporal parameters. However, these effects depended on the drugs and doses. Cluster analysis showed that drugs and doses which evoked similar changes were closely related and were included in separate clusters with respect to one another. In particular, the present results showed that benzodiazepines and antiepileptics cluster differently in their effects. Thus, this model could be a useful tool for assessing new antiepileptic drugs.