Vincent Tiing Tiong
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincent Tiing Tiong.
Langmuir | 2013
Jinzhang Liu; Geoffrey Will; Vincent Tiing Tiong; Hongxia Wang; Nunzio Motta
We present an electrochemical exfoliation method to produce controlled thickness graphene flakes by ultrasound assistance. Bilayer graphene flakes are dominant in the final product by using sonication during the electrochemical exfoliation process, while without sonication the product contains a larger percentage of four-layer graphene flakes. Graphene sheets prepared by using the two procedures are processed into films to measure their respective sheet resistance and optical transmittance. Solid-state electrolyte supercapacitors are made using the two types of graphene films. Our study reveals that films with a higher content of multilayer graphene flakes are more conductive, and their resistance is more easily reduced by thermal annealing, making them suitable as transparent conducting films. The film with higher content of bilayer graphene flakes shows instead higher capacitance when used as electrode in a supercapacitor.
Beilstein Journal of Nanotechnology | 2014
Vincent Tiing Tiong; John Bell; Hongxia Wang
Summary The present work demonstrates a systematic approach for the synthesis of pure kesterite-phase Cu2ZnSnS4 (CZTS) nanocrystals with a uniform size distribution by a one-step, thioglycolic acid (TGA)-assisted hydrothermal route. The formation mechanism and the role of TGA in the formation of CZTS compound were thoroughly studied. It has been found that TGA interacted with Cu2+ to form Cu+ at the initial reaction stage and controlled the crystal-growth of CZTS nanocrystals during the hydrothermal reaction. The consequence of the reduction of Cu2+ to Cu+ led to the formation Cu2− xS nuclei, which acted as the crystal framework for the formation of CZTS compound. CZTS was formed by the diffusion of Zn2+ and Sn4+ cations to the lattice of Cu2− xS during the hydrothermal reaction. The as-synthesized CZTS nanocrystals exhibited strong light absorption over the range of wavelength beyond 1000 nm. The band gap of the material was determined to be 1.51 eV, which is optimal for application in photoelectric energy conversion device.
CrystEngComm | 2014
Vincent Tiing Tiong; Yi Zhang; John Bell; Hongxia Wang
High quality Cu2ZnSnS4 (CZTS) films with uniform thickness and smooth surface were prepared using nanocrystals synthesized by a one-step hydrothermal method. It is found that the nature of the sulphur precursor used in the hydrothermal reaction influences both the compositional purity and the crystal structure of the synthesized hydrothermal product significantly. The CZTS material consisting of both wurtzite and kesterite crystal structures was obtained when using an organic sulfur precursor such as thioacetamide and thiourea in the precursor solution of the hydrothermal reaction while the pure kesterite phase CZTS nanocrystals were made when Na2S was employed as the sulphur precursor. CZTS thin films deposited on a Mo–soda lime glass substrate with uniform thickness (1.7 μm) were made by a simple doctor-blading method. The investigation of the effect of thermal treatment on the film has indicated that the wurtzite CZTS material was completely transformed to the kesterite phase when the material was annealed at 550 °C. Large grains (around 2 μm in size) were found on the surface of the CZTS film which was annealed at 600 °C. The evaluation of the photoresponse of the CZTS thin films has showed that a higher and very stable photocurrent was generated by the film annealed at 600 °C compared to the film annealed at 550 °C.
Journal of Materials Chemistry | 2017
Ngoc Duy Pham; Vincent Tiing Tiong; Peng Chen; Lianzhou Wang; Gregory J. Wilson; John Bell; Hongxia Wang
Methylammonium lead triiodide (MAPbI3) perovskite solar cells have gained significant attention with an impressive certified power conversion efficiency of 22.1%. Suppression of recombination at the interface and grain boundaries is critical to achieve high performance perovskite solar cells (PSCs). Here, we report a simple method to improve the performance of PSCs by incorporating a lead chloride (PbCl2) material into the MAPbI3 perovskite precursor through a Lewis acid–base adduct. The optimal concentration of PbCl2 that helps increase the grain size of MAPbI3 with introduction of the ideal amount secondary phases (lead iodide and methylammonium lead tri-chloride) is 2.5% (molar ratio, relative to lead iodide). Examination by steady-state photoluminescence and time-resolved photoluminescence has shown that devices based on MAPbI3-2.5% of PbCl2 facilitated longer charge carrier lifetime and electron–hole collection efficiency which is ascribed to reduced defects and concurrent improved material crystallinity. Electrochemical impedance spectra (EIS) of the corresponding PSCs have revealed that, compared to the pristine MAPbI3 perovskite film, the 2.5% PbCl2-additive increased the recombination resistance of the PSCs by 2.4-fold. Meanwhile, measurement of the surface potential of the perovskite films has indicated that the PbCl2-additive modifies the electronic properties of the film, shifting the fermi-level of the MAPbI3 film by 90 meV, leading to a more favourable energetic band matching for charge transfer. As a result, the performance of PSCs is enhanced from an average efficiency of 16.5% to an average efficiency of 18.1% with maximum efficiency reaching 19% due to the significantly improved fill-factor (from 0.69 to 0.76), while the hysteresis effect is also suppressed with the PbCl2-additive.
RSC Advances | 2015
Vincent Tiing Tiong; Yi Zhang; John Bell; Hongxia Wang
Organic solvents are commonly used in ink precursors of Cu2ZnSnS4 (CZTS) nanocrystals to make thin films for applications such as solar cells. However, the traces of carbon residual left behind by the organic solvents after high-temperature annealing is generally considered to restrict the growth of nanocrystals to form large grains. This work reported the first systematic study on the influence of carbon content of organic solvents on the grain growth of CZTS nanomaterial during high temperature sulfurization annealing. Solvents with carbon atom per molecule varying from 3 to 10 were used to made ink of CZTS nanocrystals for thin film deposition. It has been found that, after high temperature sulfurization annealing, a bilayer structure was formed in the CZTS film using organic solvent containing 3 carbon atoms per solvent molecule based on glycerol and 1,3-propanediol. The top layer consisted of closely-packed large grains and the bottom layer was made of as-synthesized nanoparticles. In contrast, the CZTS film made with the solvent molecule with more carbon atoms including 1,5-pentanediol (5 carbon atoms) and 1,7-heptanediol (7 carbon atoms) consisted of nanoparticles embedded with large crystals. It is believed that the carbon residues left behind by the organic solvents affected the necking of CZTS nanocrystals to form large grains through influencing the surface property of nanocrystals. Furthermore, it has also been observed that the solvent affected the thickness of MoS2 layer which was formed between CZTS and Mo substrate. A thinner MoS2 film (50 nm) was obtained with the slurry using carbon-rich terpineol as solvent whereas the thickest MoS2 (350 nm) was obtained with the film made from 1,3-propanediol based solvent. The evaluation of the photoactivity of the CZTS thin films has demonstrated that a higher photocurrent was generated with the film containing more large grains.
Journal of Physical Chemistry Letters | 2018
Disheng Yao; Chunmei Zhang; Ngoc Duy Pham; Yaohong Zhang; Vincent Tiing Tiong; Aijun Du; Qing Shen; Gregory J. Wilson; Hongxia Wang
Organic-inorganic hybrid lead halide perovskite solar cells have demonstrated competitive power conversion efficiency over 22%; nevertheless, critical issues such as unsatisfactory device stability, serious current-voltage hysteresis, and formation of photo nonactive perovskite phases are obstacles for commercialization of this photovoltaics technology. Herein we report a facial yet effective method to hinder formation of photoinactive δ-FAPbI3 and hysteresis behavior in planar heterojunction perovskite solar cells based on K x(MA0.17FA0.83)1- xPbI2.5Br0.5 (0≤ x ≤ 0.1) through incorporation of potassium ions (K+). X-ray diffraction patterns demonstrate formation of photoinactive δ-FAPbI3 was almost completely suppressed after K+ incorporation. Density functional theory calculation shows K+ prefers to enter the interstitial sites of perovskite lattice, leading to chemical environmental change in the crystal structure. Ultrafast transient absorption spectroscopy has revealed that K+ incorporation leads to enhanced carrier lifetime by 50%, which is also confirmed by reduced trap-assisted recombination of the perovskite solar cells containing K+ in photovoltage decay. Ultraviolet photoelectron spectroscopy illustrates that K+ incorporation results in a significant rise of conduction band minimum of the perovskite material by 130 meV, leading to a more favorable energy alignment with electron transporting material. At the optimal content of 3% K+ (molar ratio, relative to the total monovalent cations), nearly hysteresis-free, enhanced power conversion efficiencies from 15.72% to 17.23% were obtained in this solar cell.
Beilstein Journal of Nanotechnology | 2018
Nima Khoshsirat; Fawad Ali; Vincent Tiing Tiong; Mojtaba Amjadipour; Hongxia Wang; M. Shafiei; Nunzio Motta
Molybdenum (Mo) is the most commonly used material as back contact in thin-film solar cells. Adhesion of Mo film to soda–lime glass (SLG) substrate is crucial to the performance of solar cells. In this study, an optimized bilayer structure made of a thin layer of Mo on an ultra-thin chromium (Cr) adhesion layer is used as the back contact for a copper zinc tin sulfide (CZTS) thin-film solar cell on a SLG substrate. DC magnetron sputtering is used for deposition of Mo and Cr films. The conductivity of Mo/Cr bilayer films, their microstructure and surface morphology are studied at different deposition powers and working pressures. Good adhesion to the SLG substrate has been achieved by means of an ultra-thin Cr layer under the Mo layer. By optimizing the deposition conditions we achieved low surface roughness, high optical reflectance and low sheet resistivity while we could decrease the back contact thickness to 600 nm. That is two thirds to half of the thickness that is currently being used for bilayer and single layer back contact for thin-film solar cells. We demonstrate the excellent properties of Mo/Cr bilayer as back contact of a CZTS solar cell.
Nano Energy | 2017
Ngoc Duy Pham; Vincent Tiing Tiong; Disheng Yao; Wayde N. Martens; Antonio Guerrero; Juan Bisquert; Hongxia Wang
Science of Advanced Materials | 2014
Vincent Tiing Tiong; Tubshin Hreid; Geoffrey Will; John Bell; Hongxia Wang
Advanced Functional Materials | 2018
Vincent Tiing Tiong; Ngoc Duy Pham; Teng Wang; Tianxiang Zhu; Xinluo Zhao; Yaohong Zhang; Qing Shen; John Bell; Linhua Hu; Songyuan Dai; Hongxia Wang
Collaboration
Dive into the Vincent Tiing Tiong's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs