Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenzo Alessandro Gennarino is active.

Publication


Featured researches published by Vincenzo Alessandro Gennarino.


Science | 2009

A Gene Network Regulating Lysosomal Biogenesis and Function

Marco Sardiello; Michela Palmieri; Alberto di Ronza; Diego L. Medina; Marta Valenza; Vincenzo Alessandro Gennarino; Chiara Di Malta; Francesca Donaudy; Valerio Embrione; Roman S. Polishchuk; Sandro Banfi; Giancarlo Parenti; Andrea Ballabio

Master Controller Cellular organelles allow the localized regulation of specialized processes. Under certain conditions, such as increased growth, organelles may be required to alter their function. Coordinated regulation of the gene networks required for mitochondrial and endoplasmic reticulum function has been observed. Now, Sardiello et al. (p. 473; published online 25 June) have discovered a gene network regulating the lysosome, the major organelle involved in the degradation of internalized macromolecules. Many lysosomal genes were regulated by a single transcription factor, TFEB. TFEB itself can be activated when the lysosome malfunctions and can regulate both the abundance of lysosomes found in the cell, as well as the ability to degrade complex molecules, including a mutant protein that accumulates in patients with Huntingtons disease. These results may have implications for the treatment of human lysosomal storage disorders, which are characterized by the aberrant accumulation of macromolecules causing cellular dysfunction. Coordination of the genes that regulate lysosomal biogenesis occurs via a shared sequence motif and one transcription factor. Lysosomes are organelles central to degradation and recycling processes in animal cells. Whether lysosomal activity is coordinated to respond to cellular needs remains unclear. We found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB). Under aberrant lysosomal storage conditions, TFEB translocated from the cytoplasm to the nucleus, resulting in the activation of its target genes. TFEB overexpression in cultured cells induced lysosomal biogenesis and increased the degradation of complex molecules, such as glycosaminoglycans and the pathogenic protein that causes Huntington’s disease. Thus, a genetic program controls lysosomal biogenesis and function, providing a potential therapeutic target to enhance cellular clearing in lysosomal storage disorders and neurodegenerative diseases.


Genome Research | 2012

Identification of microRNA-regulated gene networks by expression analysis of target genes.

Vincenzo Alessandro Gennarino; Giovanni D'Angelo; Gopuraja Dharmalingam; Serena Fernandez; Giorgio Russolillo; Remo Sanges; Margherita Mutarelli; Vincenzo Belcastro; Andrea Ballabio; Pasquale Verde; Marco Sardiello; Sandro Banfi

MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs.


BMC Genomics | 2010

miRNeye: a microRNA expression atlas of the mouse eye

Marianthi Karali; Ivana Peluso; Vincenzo Alessandro Gennarino; Marchesa Bilio; Roberta Verde; Giampiero Lago; Pascal Dollé; Sandro Banfi

BackgroundMicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution.ResultsIn this report, we present the first comprehensive survey of miRNA expression in ocular tissues, using both microarray and RNA in situ hybridization (ISH) procedures. We initially determined the expression profiles of miRNAs in the retina, lens, cornea and retinal pigment epithelium of the adult mouse eye by microarray. Each tissue exhibited notably distinct miRNA enrichment patterns and cluster analysis identified groups of miRNAs that showed predominant expression in specific ocular tissues or combinations of them. Next, we performed RNA ISH for over 220 miRNAs, including those showing the highest expression levels by microarray, and generated a high-resolution expression atlas of miRNAs in the developing and adult wild-type mouse eye, which is accessible in the form of a publicly available web database. We found that 122 miRNAs displayed restricted expression domains in the eye at different developmental stages, with the majority of them expressed in one or more cell layers of the neural retina.ConclusionsThis analysis revealed miRNAs with differential expression in ocular tissues and provided a detailed atlas of their tissue-specific distribution during development of the murine eye. The combination of the two approaches offers a valuable resource to decipher the contributions of specific miRNAs and miRNA clusters to the development of distinct ocular structures.


Cell | 2015

Pumilio1 Haploinsufficiency Leads to SCA1-like Neurodegeneration by Increasing Wild-Type Ataxin1 Levels

Vincenzo Alessandro Gennarino; Ravi K. Singh; Joshua J. White; Antonia De Maio; Kihoon Han; Paymaan Jafar-Nejad; Alberto di Ronza; Hyojin Kang; Layal S. Sayegh; Thomas A. Cooper; Harry T. Orr; Roy V. Sillitoe; Huda Y. Zoghbi

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative proteinopathy, in which a mutant protein (in this case, ATAXIN1) accumulates in neurons and exerts toxicity; in SCA1, this process causes progressive deterioration of motor coordination. Seeking to understand how post-translational modification of ATAXIN1 levels influences disease, we discovered that the RNA-binding protein PUMILIO1 (PUM1) not only directly regulates ATAXIN1 but also plays an unexpectedly important role in neuronal function. Loss of Pum1 caused progressive motor dysfunction and SCA1-like neurodegeneration with motor impairment, primarily by increasing Ataxin1 levels. Breeding Pum1(+/-) mice to SCA1 mice (Atxn1(154Q/+)) exacerbated disease progression, whereas breeding them to Atxn1(+/-) mice normalized Ataxin1 levels and largely rescued the Pum1(+/-) phenotype. Thus, both increased wild-type ATAXIN1 levels and PUM1 haploinsufficiency could contribute to human neurodegeneration. These results demonstrate the importance of studying post-transcriptional regulation of disease-driving proteins to reveal factors underlying neurodegenerative disease.


Gene | 2011

HOCTAR database: a unique resource for microRNA target prediction.

Vincenzo Alessandro Gennarino; Marco Sardiello; Margherita Mutarelli; Gopuraja Dharmalingam; Vincenza Maselli; Giampiero Lago; Sandro Banfi

microRNAs (miRNAs) are the most abundant class of small RNAs in mammals. They play an important role in regulation of gene expression by inducing mRNA cleavage or translational inhibition. Each miRNA targets an average of 100–200 genes by binding, preferentially, to their 3′ UTRs by means of partial sequence complementarity. Most miRNAs are localized within transcriptional units, termed host genes, and show similar expression behavior with respect to their corresponding host genes. Considering the impact of miRNA in the regulation of gene expression and their involvement in a growing number of human disorders, it is vital to develop sensitive computational approaches able to identify miRNA target genes. The HOCTAR database (db) is a publicly available resource collecting ranked list of predicted target genes for 290 intragenic miRNAs annotated in human. HOCTARdb is a unique resource that integrates miRNA target prediction genes and transcriptomic data to score putative miRNA targets looking at the expression behavior of their host genes. We demonstrated, by testing 135 known validated target genes (either at the translational or transcriptional level) for different miRNAs, that the miRNA target prediction lists present in HOCTARdb are highly reliable. Moreover, HOCTARdb associates biological roles to each miRNA-controlled transcriptional network by means of Gene Ontology analysis. This information is easily accessible through a user-friendly query page. The HOCTARdb is available at http://hoctar.tigem.it/. We believe that a detailed relationship between miRNAs and their target genes and a constant update of the information contained in HOCTARdb will provide an extremely valuable resource to assist the researcher in the discovery of miRNA target genes.


BMC Genomics | 2010

Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements.

Danilo Licastro; Vincenzo Alessandro Gennarino; Francesca Petrera; Remo Sanges; Sandro Banfi; Elia Stupka

BackgroundUltraconserved elements (UCEs) are highly constrained elements of mammalian genomes, whose functional role has not been completely elucidated yet. Previous studies have shown that some of them act as enhancers in mouse, while some others are expressed in both normal and cancer-derived human tissues. Only one UCE element so far was shown to present these two functions concomitantly, as had been observed in other isolated instances of single, non ultraconserved enhancer elements.ResultsWe used a custom microarray to assess the levels of UCE transcription during mouse development and integrated these data with published microarray and next-generation sequencing datasets as well as with newly produced PCR validation experiments. We show that a large fraction of non-exonic UCEs is transcribed across all developmental stages examined from only one DNA strand. Although the nature of these transcripts remains a mistery, our meta-analysis of RNA-Seq datasets indicates that they are unlikely to be short RNAs and that some of them might encode nuclear transcripts. In the majority of cases this function overlaps with the already established enhancer function of these elements during mouse development. Utilizing several next-generation sequencing datasets, we were further able to show that the level of expression observed in non-exonic UCEs is significantly higher than in random regions of the genome and that this is also seen in other regions which act as enhancers.ConclusionOur data shows that the concurrent presence of enhancer and transcript function in non-exonic UCE elements is more widespread than previously shown. Moreover through our own experiments as well as the use of next-generation sequencing datasets, we were able to show that the RNAs encoded by non-exonic UCEs are likely to be long RNAs transcribed from only one DNA strand.


Human Molecular Genetics | 2015

Fragile X-like behaviors and abnormal cortical dendritic spines in Cytoplasmic FMR1-interacting protein 2-mutant mice

Kihoon Han; Hogmei Chen; Vincenzo Alessandro Gennarino; Ronald Richman; Hui-Chen Lu; Huda Y. Zoghbi

Silencing of fragile X mental retardation 1 (FMR1) gene and loss of fragile X mental retardation protein (FMRP) cause fragile X syndrome (FXS), a genetic disorder characterized by intellectual disability and autistic behaviors. FMRP is an mRNA-binding protein regulating neuronal translation of target mRNAs. Abnormalities in actin-rich dendritic spines are major neuronal features in FXS, but the molecular mechanism and identity of FMRP targets mediating this phenotype remain largely unknown. Cytoplasmic FMR1-interacting protein 2 (Cyfip2) was identified as an interactor of FMRP, and its mRNA is a highly ranked FMRP target in mouse brain. Importantly, Cyfip2 is a component of WAVE regulatory complex, a key regulator of actin cytoskeleton, suggesting that Cyfip2 could be implicated in the dendritic spine phenotype of FXS. Here, we generated and characterized Cyfip2-mutant (Cyfip2(+/-)) mice. We found that Cyfip2(+/-) mice exhibited behavioral phenotypes similar to Fmr1-null (Fmr1(-/y)) mice, an animal model of FXS. Synaptic plasticity and dendritic spines were normal in Cyfip2(+/-) hippocampus. However, dendritic spines were altered in Cyfip2(+/-) cortex, and the dendritic spine phenotype of Fmr1(-/y) cortex was aggravated in Fmr1(-/y); Cyfip2(+/-) double-mutant mice. In addition to the spine changes at basal state, metabotropic glutamate receptor (mGluR)-induced dendritic spine regulation was impaired in both Fmr1(-/y) and Cyfip2(+/-) cortical neurons. Mechanistically, mGluR activation induced mRNA translation-dependent increase of Cyfip2 in wild-type cortical neurons, but not in Fmr1(-/y) or Cyfip2(+/-) neurons. These results suggest that misregulation of Cyfip2 function and its mGluR-induced expression contribute to the neurobehavioral phenotypes of FXS.


eLife | 2015

NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation

Vincenzo Alessandro Gennarino; Callison E. Alcott; Chun An Chen; Arindam Chaudhury; Madelyn A. Gillentine; Jill A. Rosenfeld; Sumit Parikh; James W. Wheless; Elizabeth Roeder; Dafne D.G. Horovitz; Erin K. Roney; Janice L. Smith; Sau Wai Cheung; Wei Li; Joel R. Neilson; Christian P. Schaaf; Huda Y. Zoghbi

The brain is sensitive to the dose of MeCP2 such that small fluctuations in protein quantity lead to neuropsychiatric disease. Despite the importance of MeCP2 levels to brain function, little is known about its regulation. In this study, we report eleven individuals with neuropsychiatric disease and copy-number variations spanning NUDT21, which encodes a subunit of pre-mRNA cleavage factor Im. Investigations of MECP2 mRNA and protein abundance in patient-derived lymphoblastoid cells from one NUDT21 deletion and three duplication cases show that NUDT21 regulates MeCP2 protein quantity. Elevated NUDT21 increases usage of the distal polyadenylation site in the MECP2 3′ UTR, resulting in an enrichment of inefficiently translated long mRNA isoforms. Furthermore, normalization of NUDT21 via siRNA-mediated knockdown in duplication patient lymphoblasts restores MeCP2 to normal levels. Ultimately, we identify NUDT21 as a novel candidate for intellectual disability and neuropsychiatric disease, and elucidate a mechanism of pathogenesis by MeCP2 dysregulation via altered alternative polyadenylation. DOI: http://dx.doi.org/10.7554/eLife.10782.001


Cell Reports | 2018

RBM17 Interacts with U2SURP and CHERP to Regulate Expression and Splicing of RNA-Processing Proteins

Antonia De Maio; Hari Krishna Yalamanchili; Carolyn J. Adamski; Vincenzo Alessandro Gennarino; Zhandong Liu; Jun Qin; Sung Y. Jung; Ronald Richman; Harry T. Orr; Huda Y. Zoghbi

SUMMARY RNA splicing entails the coordinated interaction of more than 150 proteins in the spliceosome, one of the most complex of the cell’s molecular machines. We previously discovered that the RNA-binding motif protein 17 (RBM17), a component of the spliceosome, is essential for survival and cell maintenance. Here, we find that it interacts with the spliceosomal factors U2SURP and CHERP and that they reciprocally regulate each other’s stability, both in mouse and in human cells. Individual knockdown of each of the three proteins induces overlapping changes in splicing and gene expression of transcripts enriched for RNA-processing factors. Our results elucidate the function of RBM17, U2SURP, and CHERP and link the activity of the spliceosome to the regulation of downstream RNA-binding proteins. These data support the hypothesis that, beyond driving constitutive splicing, spliceosomal factors can regulate alternative splicing of specific targets.


Pathogenetics | 2009

microRNAs and genetic diseases

Nicola Meola; Vincenzo Alessandro Gennarino; Sandro Banfi

Collaboration


Dive into the Vincenzo Alessandro Gennarino's collaboration.

Top Co-Authors

Avatar

Sandro Banfi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Huda Y. Zoghbi

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Marco Sardiello

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrea Ballabio

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kihoon Han

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto di Ronza

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Antonia De Maio

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge