Vincenzo Alterio
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vincenzo Alterio.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Vincenzo Alterio; Mika Hilvo; Anna Di Fiore; Claudiu T. Supuran; Peiwen Pan; Seppo Parkkila; Andrea Scaloni; Jaromir Pastorek; Silvia Pastorekova; Carlo Pedone; Andrea Scozzafava; Simona Maria Monti; Giuseppina De Simone
Carbonic anhydrase (CA) IX is a plasma membrane-associated member of the α-CA enzyme family, which is involved in solid tumor acidification. It is a marker of tumor hypoxia and a prognostic factor in several human cancers. An aberrant increase in CA IX expression in chronic hypoxia and during development of various carcinomas contributes to tumorigenesis through at least two mechanisms: pH regulation and cell adhesion control. Here we report the X-ray structure of the catalytic domain of CA IX in complex with a classical, clinically used sulfonamide inhibitor, acetazolamide. The structure reveals a typical α-CA fold, which significantly differs from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the PG domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. A correlation between the three-dimensional structure and the physiological role of the enzyme is here suggested, based on the measurement of the pH profile of the catalytic activity for the physiological reaction, CO2 hydration to bicarbonate and protons. On the basis of the structural differences observed between CA IX and the other membrane-associated α-CAs, further prospects for the rational drug design of isozyme-specific CA inhibitors are proposed, given that inhibition of this enzyme shows antitumor activity both in vitro and in vivo.
Expert Opinion on Drug Discovery | 2013
Giuseppina De Simone; Vincenzo Alterio; Claudiu T. Supuran
Introduction: Carbonic anhydrases (CAs, EC 4.2.1.1) exist as five genetically distinct families (α, β, γ, δ and ζ) in organisms all over the phylogenetic tree. Due to the ubiquity of such enzymes, the selective inhibition and polypharmacology of inhibitors is an important aspect of all drug design campaigns. There are several classes of CA inhibitors (CAIs): i) metal ion binders (sulfonamides and their isosteres [sulfamates/sulfamides], dithiocarbamates, mercaptans and hydroxamates); ii) compounds anchoring to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, esters and sulfocoumarins) and iii) coumarins and related compounds which apparently bind even further away from the metal ion. Areas covered: The authors rationalize the drug design strategies of inhibitors belonging to the first two classes, based on recent X-ray crystallographic data. More precisely, this is achieved by analyzing how the hydrophobic and hydrophilic halves of the enzyme active site interact with inhibitors. This task has been eased by the recent report of β-CA-like enzymes possessing carbon disulfide and carbonyl sulfide hydrolase activities, respectively, allowing the authors to propose a general approach of structure-based drug design of CAIs. Expert opinion: Although amazing progress has been made in the structure-based drug design of CAIs, this field is still in progress, with many constantly emerging new findings. Indeed, several new such enzymes were discovered and characterized recently and novel chemotypes were explored for finding compounds with a better inhibition profile. It is anticipated that this will continue to be one of the main frontiers in the search of pharmacologically relevant enzyme inhibitors.
Biochimie | 2012
Vincenzo Alterio; Emma Langella; Francesca Viparelli; Daniela Vullo; Giuseppina Ascione; Nina A. Dathan; François M. M. Morel; Claudiu T. Supuran; Giuseppina De Simone; Simona Maria Monti
Carbonic anhydrases (CAs) catalyze with high efficiency the reversible hydration of carbon dioxide, an essential reaction for many biological processes, such as photosynthesis, respiration, renal tubular acidification, and bone resorption. Diatoms, which are one of the most common types of phytoplankton and are widespread in oceans, possess CAs fundamental for acquisition of inorganic carbon. Recently, in the marine diatom Thalassiosira weissflogii a novel enzyme, CDCA1, naturally using Cd in its active site, has been isolated and categorized in a new CA class, namely zeta-CA. This enzyme, which consists of three repeats (R1, R2 and R3), is a cambialistic carbonic anhydrase that can spontaneously exchange Zn or Cd at its active centre, presumably an adaptative advantage for diatoms that grow fast in the metal-poor environment of the surface ocean. In this paper we completed the characterization of this enzyme, reporting the X-ray structure of the last repeat, CDCA1-R3 in its cadmium-bound form, and presenting a model of the full length protein obtained by docking approaches. Results show that CDCA1 has a quite compact not symmetric structure, characterized by two covalently linked R1-R2 and R2-R3 interfaces and a small non-covalent R1-R3 interface. The three dimensional arrangement shows that most of the non-conserved aminoacids of the three repeats are located at the interface regions and that the active sites are far from each other and completely accessible to the substrate. Finally, a detailed inhibition study of CDCA1-R3 repeat in both cadmium- and zinc- bound form has been performed with sulfonamides and sulfamates derivatives. The results have been compared with those previously reported for other CA classes, namely alpha- and beta-classes, and correlated with the structural features of these enzymes.
Journal of Medicinal Chemistry | 2013
Marouan Rami; Ludwig Dubois; Nanda-Kumar Parvathaneni; Vincenzo Alterio; Simon J. A. van Kuijk; Simona Maria Monti; Philippe Lambin; Giuseppina De Simone; Claudiu T. Supuran; Jean-Yves Winum
A series of nitroimidazoles incorporating sulfonamide/sulfamide/sulfamate moieties were designed and synthesized as radio/chemosensitizing agent targeting the tumor-associated carbonic anhydrase (CA) isoforms IX and XII. Most of the new compounds were nanomolar inhibitors of these isoforms. Crystallographic studies on the complex of hCA II with the lead sulfamide derivative of this series clarified the binding mode of this type of inhibitors in the enzyme active site cavity. Some of the best nitroimidazole CA IX inhibitors showed significant activity in vitro by reducing hypoxia-induced extracellular acidosis in HT-29 and HeLa cell lines. In vivo testing of the lead molecule in the sulfamide series, in cotreatment with doxorubicin, demonstrated a chemosensitization of CA IX containing tumors. Such CA inhibitors, specifically targeting the tumor-associated isoforms, are candidates for novel treatment strategies against hypoxic tumors overexpressing extracellular CA isozymes.
Chemical Communications | 2011
Anna Di Fiore; Alfonso Maresca; Vincenzo Alterio; Claudiu T. Supuran; Giuseppina De Simone
N-substituted benzenesulfonamides, incorporating the N-amino-, N-hydroxy- and N-methoxy-moieties at the sulfonamide zinc binding group, have been investigated as CAIs by means of inhibition and structural studies, unraveling interesting aspects related to their inhibition mechanism.
Bioorganic & Medicinal Chemistry Letters | 2012
Emanuela Truppo; Claudiu T. Supuran; Annamaria Sandomenico; Daniela Vullo; Alessio Innocenti; Anna Di Fiore; Vincenzo Alterio; Giuseppina De Simone; Simona Maria Monti
Human carbonic anhydrase (CA, EC 4.2.1.1) VII is a cytosolic enzyme with high carbon dioxide hydration activity. Here we report an unexpected S-glutathionylation of hCA VII which has also been observed earlier in vivo for hCA III, another cytosolic isoform. Cys183 and Cys217 were found to be the residues involved in reaction with glutathione for hCA VII. The two reactive cysteines were then mutated and the corresponding variant (C183S/C217S) expressed. The native enzyme, the variant and the S-glutathionylated adduct (sgCA VII) as well as hCA III were fully characterized for their CO(2) hydration, esterase/phosphatase activities, and inhibition with sulfonamides. Our findings suggest that hCA VII could use the in vivo S-glutathionylation to function as an oxygen radical scavenger for protecting cells from oxidative damage, as the activity and affinity for inhibitors of the modified enzyme are similar to those of the wild type.
Bioorganic & Medicinal Chemistry Letters | 2015
Giuseppina De Simone; Simona Maria Monti; Vincenzo Alterio; Martina Buonanno; Viviana De Luca; Mosè Rossi; Vincenzo Carginale; Claudiu T. Supuran; Clemente Capasso; Anna Di Fiore
Two thermostable α-carbonic anhydrases (α-CAs) isolated from thermophilic Sulfurihydrogenibium spp., namely SspCA (from S. yellowstonensis) and SazCA (from S. azorense), were shown in a previous work to possess interesting complementary properties. SspCA was shown to have an exceptional thermal stability, whereas SazCA demonstrated to be the most active α-CA known to date for the CO2 hydration reaction. Here we report the crystallographic structure of SazCA and the identification of the structural features responsible for its high catalytic activity, by comparing it with SspCA structure. These data are of relevance for the design of engineered proteins showing higher stability and catalytic activity than other α-CAs known to date.
Biopolymers | 2014
Vincenzo Alterio; Peiwen Pan; Seppo Parkkila; Martina Buonanno; Claudiu T. Supuran; Simona Maria Monti; Giuseppina De Simone
Carbonic anhydrase isoform XIV (CA XIV) is the last member of the human (h) CA family discovered so far, being localized in brain, kidneys, colon, small intestine, urinary bladder, liver, and spinal cord. It has recently been described as a possible drug target for treatment of epilepsy, some retinopathies as well as some skin tumors. Human carbonic anhydrase (hCA) XIV is a membrane‐associated protein consisting of an N‐terminal extracellular domain, a putative transmembrane region, and a small cytoplasmic tail. In this article, we report the expression, purification, and the crystallographic structure of the entire extracellular domain of this enzyme. The analysis of the structure revealed the typical α‐CA fold, in which a 10‐stranded β‐sheet forms the core of the molecule, while the comparison with all the other membrane associated isoforms (hCAs IV, IX, and XII) allowed to identify the diverse oligomeric arrangement and the sequence and structural differences observed in the region 127–136 as the main factors to consider in the design of selective inhibitors for each one of the membrane associated α‐CAs.
Current Pharmaceutical Design | 2010
Claudiu T. Supuran; Anna Di Fiore; Vincenzo Alterio; Simona Maria Montib; Giuseppina De Simone
The carbonic anhydrase (CA) family has recently become an important target for the drug design of inhibitors with potential use as diagnostic and therapeutic tools. However, given the high degree of sequence and structure similarity among the different CA isoforms, no CA-directed drug developed so far has displayed selectivity for a specific isozyme. Since X-Ray crystallography is a very useful tool for the rational drug design of selective enzyme inhibitors, in recent years extensive research efforts have been devoted to the structural studies of all catalytically active α-CA isoforms, with the consequent resolution of the crystallographic structures of nearly all such enzyme isoforms. In this paper we review the progress that has recently been made in this field. In particular, we summarize the main structural features of hCA XIII and hCA IX, the most recently characterized human CA isoforms, and recapitulate how 3D structures of these enzymes, together with kinetic experiments, have been used either to deepen our knowledge on the structural features responsible of the catalytic properties of this protein family or to obtain important information for the rational drug design of inhibitors with better selectivity properties.
Proteins | 2007
Luigi Mandrich; Valeria Menchise; Vincenzo Alterio; Giuseppina De Simone; Carlo Pedone; Mosè Rossi; Giuseppe Manco
Recent mutagenic and molecular modelling studies suggested a role for glycine 84 in the putative oxyanion loop of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. A 114 times decrease of the esterase catalytic activity of the G84S mutant was observed, without changes in the thermal stability. The recently solved three‐dimensional (3D) structure of EST2 in complex with a HEPES molecule permitted to demonstrate that G84 (together with G83 and A156) is involved in the stabilization of the oxyanion through a hydrogen bond from its main chain NH group. The structural data in this case did not allowed us to rationalize the effect of the mutation, since this hydrogen bond was predicted to be unaltered in the mutant. Since the mutation could shed light on the role of the oxyanion loop in the HSL family, experiments to elucidate at the mechanistic level the reasons of the observed drop in k cat were devised. In this work, the kinetic and structural features of the G84S mutant were investigated in more detail. The optimal temperature and pH for the activity of the mutated enzyme were found significantly changed (T = 65°C and pH = 5.75). The catalytic constants K M and Vmax were found considerably altered in the mutant, with ninefold increased K M and 14‐fold decreased Vmax, at pH 5.75. At pH 7.1, the decrease in k cat was much more dramatic. The measurement of kinetic constants for some steps of the reaction mechanism and the resolution of the mutant 3D structure provided evidences that the observed effects were partly due to the steric hindrance of the S84‐OH group towards the ester substrate and partly to its interference with the nucleophilic attack of a water molecule on the second tetrahedral intermediate. Proteins 2008.