Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vincenzo Di Bartolo is active.

Publication


Featured researches published by Vincenzo Di Bartolo.


Nature Reviews Immunology | 2008

Tailoring T-cell receptor signals by proximal negative feedback mechanisms.

Oreste Acuto; Vincenzo Di Bartolo; Frédérique Michel

The T-cell receptor (TCR) signalling machinery is central in determining the response of a T cell (establishing immunity or tolerance) following exposure to antigen. This process is made difficult by the narrow margin of self and non-self discrimination, and by the complexity of the genetic programmes that are induced for each outcome. Recent studies have identified novel negative feedback mechanisms that are rapidly induced by TCR engagement and that have key roles in the regulation of signal triggering and propagation. In vitro and in vivo data suggest that they are important in determining ligand discrimination by the TCR and in regulating signal output in response to antigen.


The EMBO Journal | 2007

ZAP‐70 kinase regulates HIV cell‐to‐cell spread and virological synapse formation

Nathalie Sol-Foulon; Marion Sourisseau; Françoise Porrot; Maria-Isabel Thoulouze; Céline Trouillet; Cinzia Nobile; Fabien Blanchet; Vincenzo Di Bartolo; Nelly Noraz; Naomi Taylor; Andrés Alcover; Claire Hivroz; Olivier Schwartz

HIV efficiently spreads in lymphocytes, likely through virological synapses (VSs). These cell–cell junctions share some characteristics with immunological synapses, but cellular proteins required for their constitution remain poorly characterized. We have examined here the role of ZAP‐70, a key kinase regulating T‐cell activation and immunological synapse formation, in HIV replication. In lymphocytes deficient for ZAP‐70, or expressing a kinase‐dead mutant of the protein, HIV replication was strikingly delayed. We have characterized further this replication defect. ZAP‐70 was dispensable for the early steps of viral cycle, from entry to expression of viral proteins. However, in the absence of ZAP‐70, intracellular Gag localization was impaired. ZAP‐70 was required in infected donor cells for efficient cell‐to‐cell HIV transmission to recipients and for formation of VSs. These results bring novel insights into the links that exist between T‐cell activation and HIV spread, and suggest that HIV usurps components of the immunological synapse machinery to ensure its own spread through cell‐to‐cell contacts.


Immunity | 2002

In the Immune Synapse, ZAP-70 Controls T Cell Polarization and Recruitment of Signaling Proteins but Not Formation of the Synaptic Pattern

Nicolas Blanchard; Vincenzo Di Bartolo; Claire Hivroz

Recognition by T cells of their ligands at the surface of antigen-presenting cells (APCs) leads to T cell activation, polarization of the T cell toward the APC, and formation of an immune synapse. Using ZAP-70-deficient T cells expressing zeta-GFP, we show that ZAP-70 signaling drives the TCR-dependent reorientation of the microtubule-organizing center thus leading to relocation of a zeta-GFP(+) intracellular compartment close to the APC. ZAP-70 is also necessary to supply the synapse with the signaling molecules PKC-theta and LAT. In contrast, ZAP-70 is not required for clustering of zeta-GFP and CD2 or exclusion of CD45 and CD43 from the synapse. These data show that ZAP-70-dependent signaling is required for formation of a functional immune synapse.


Journal of Biological Chemistry | 1999

Tyrosine 319 in the Interdomain B of ZAP-70 Is a Binding Site for the Src Homology 2 Domain of Lck

Michele Pelosi; Vincenzo Di Bartolo; Virginie Mounier; Dominique Mège; Jean-Marc Pascussi; Evelyne Dufour; Arnaud Blondel; Oreste Acuto

T-cell antigen receptor-induced signaling requires both ZAP-70 and Lck protein-tyrosine kinases. One essential function of Lck in this process is to phosphorylate ZAP-70 and up-regulate its catalytic activity. We have previously shown that after T-cell antigen receptor stimulation, Lck binds to ZAP-70 via its Src homology 2 (SH2) domain (LckSH2) and, more recently, that Tyr319 of ZAP-70 is phosphorylated in vivo and plays a positive regulatory role. Here, we investigated the possibility that Tyr319 mediates the SH2-dependent interaction between Lck and ZAP-70. We show that a phosphopeptide encompassing the motif harboring Tyr319, YSDP, interacted with LckSH2, although with a lower affinity compared with a phosphopeptide containing the optimal binding motif, YEEI. Moreover, mutation of Tyr319 to phenylalanine prevented the interaction of ZAP-70 with LckSH2. Based on these results, a gain-of-function mutant of ZAP-70 was generated by changing the sequence Y319SDP into Y319EEI. As a result of its increased ability to bind LckSH2, this mutant induced a dramatic increase in NFAT activity in Jurkat T-cells, was hyperphosphorylated, and displayed a higher catalytic activity compared with wild-type ZAP-70. Collectively, our findings indicate that Tyr319-mediated binding of the SH2 domain of Lck is crucial for ZAP-70 activation and consequently for the propagation of the signaling cascade leading to T-cell activation.


The EMBO Journal | 2010

Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse

Rémi Lasserre; Stéphanie Charrin; Céline Cuche; Anne Danckaert; Maria-Isabel Thoulouze; Fabrice de Chaumont; Tarn Duong; Nathalie Perrault; Nadine Varin-Blank; Jean-Christophe Olivo-Marin; Sandrine Etienne-Manneville; Monique Arpin; Vincenzo Di Bartolo; Andrés Alcover

T‐cell receptor (TCR) signalling is triggered and tuned at immunological synapses by the generation of signalling complexes that associate into dynamic microclusters. Microcluster movement is necessary to tune TCR signalling, but the molecular mechanism involved remains poorly known. We show here that the membrane‐microfilament linker ezrin has an important function in microcluster dynamics and in TCR signalling through its ability to set the microtubule network organization at the immunological synapse. Importantly, ezrin and microtubules are important to down‐regulate signalling events leading to Erk1/2 activation. In addition, ezrin is required for appropriate NF‐AT activation through p38 MAP kinase. Our data strongly support the notion that ezrin regulates immune synapse architecture and T‐cell activation through its interaction with the scaffold protein Dlg1. These results uncover a crucial function for ezrin, Dlg1 and microtubules in the organization of the immune synapse and TCR signal down‐regulation. Moreover, they underscore the importance of ezrin and Dlg1 in the regulation of NF‐AT activation through p38.


Immunity | 2003

Induction of the NF-κB Cascade by Recruitment of the Scaffold Molecule NEMO to the T Cell Receptor

Robert Weil; Klaus Schwamborn; Andrés Alcover; Christine Bessia; Vincenzo Di Bartolo; Alain Israël

Abstract The mechanism by which TCR signaling activates NF-κB is poorly understood. We demonstrate here that the IKK kinase complex is recruited to the immunological synapse and can be coprecipitated with the TCR after T cell activation. Using ZAP-70-deficient T cells expressing a hybrid molecule between the SH2 domain of ZAP-70 and NEMO/IKKγ, we showed that targeting NEMO to the immunological synapse, and more specifically its 120 N-terminal amino acids, was sufficient to selectively restore NF-κB activation in response to TCR ligation. Finally, we demonstrated that targeting of NEMO to the membrane of T cells was sufficient to induce constitutive NF-κB activation. This study shows that the localization of NEMO to the immunological synapse is important for TCR-induced NF-κB activation and offers a powerful system to dissect the NF-κB cascade in T cells.


Cell Host & Microbe | 2011

The Shigella flexneri Type Three Secretion System Effector IpgD Inhibits T Cell Migration by Manipulating Host Phosphoinositide Metabolism

Christoph Konradt; Elisabetta Frigimelica; Katharina Nothelfer; Andrea Puhar; Wilmara Salgado-Pabón; Vincenzo Di Bartolo; Daniel Scott-Algara; Cristina D. Rodrigues; Philippe J. Sansonetti; Armelle Phalipon

Shigella, the Gram-negative enteroinvasive bacterium that causes shigellosis, relies on its type III secretion system (TTSS) and injected effectors to modulate host cell functions. However, consequences of the interaction between Shigella and lymphocytes have not been investigated. We show that Shigella invades activated human CD4(+) T lymphocytes. Invasion requires a functional TTSS and results in inhibition of chemokine-induced T cell migration, an effect mediated by the TTSS effector IpgD, a phosphoinositide 4-phosphatase. Remarkably, IpgD injection into bystander T cells can occur in the absence of cell invasion. Upon IpgD-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)), the pool of PIP(2) at the plasma membrane is reduced, leading to dephosphorylation of the ERM proteins and their inability to relocalize at one T cell pole upon chemokine stimulus, likely affecting the formation of the polarized edge required for cell migration. These results reveal a bacterial TTSS effector-mediated strategy to impair T cell function.


Journal of Immunology | 2010

Mycolactone Suppresses T Cell Responsiveness by Altering Both Early Signaling and Posttranslational Events

Sheerazed Boulkroun; Laure Guenin-Macé; Maria-Isabel Thoulouze; Marc Monot; Anaı̈s Merckx; Gordon Langsley; Georges Bismuth; Vincenzo Di Bartolo; Caroline Demangel

Mycolactone is a diffusible lipid toxin produced by Mycobacterium ulcerans, the causative agent of a necrotizing skin disease referred to as Buruli ulcer. Intriguingly, patients with progressive lesions display a systemic suppression of Th1 responses that resolves on surgical excision of infected tissues. In this study, we examined the effects of mycolactone on the functional biology of T cells and identified two mechanisms by which mycolactone suppresses cell responsiveness to antigenic stimulation. At noncytotoxic concentrations, mycolactone blocked the activation-induced production of cytokines by a posttranscriptional, mammalian target of rapamycin, and cellular stress-independent mechanism. In addition, mycolactone triggered the lipid-raft association and activation of the Src-family kinase, Lck. Mycolactone-mediated hyperactivation of Lck resulted in the depletion of intracellular calcium stores and downregulation of the TCR, leading to impaired T cell responsiveness to stimulation. These biochemical alterations were not observed when T cells were exposed to other bacterial lipids, or to structurally related immunosuppressors. Mycolactone thus constitutes a novel type of T cell immunosuppressive agent, the potent activity of which may explain the defective cellular responses in Buruli ulcer patients.


Journal of Experimental Medicine | 2007

A novel pathway down-modulating T cell activation involves HPK-1-dependent recruitment of 14-3-3 proteins on SLP-76

Vincenzo Di Bartolo; Benjamin Montagne; Mogjiborahman Salek; Britta Jungwirth; Florent Carrette; Julien Fourtane; Nathalie Sol-Foulon; Frédérique Michel; Olivier Schwartz; Wolf D. Lehmann; Oreste Acuto

The SH2 domain–containing leukocyte protein of 76 kD (SLP-76) is a pivotal element of the signaling machinery controlling T cell receptor (TCR)-mediated activation. Here, we identify 14-3-3ɛ and ζ proteins as SLP-76 binding partners. This interaction was induced by TCR ligation and required phosphorylation of SLP-76 at serine 376. Ribonucleic acid interference and in vitro phosphorylation experiments showed that serine 376 is the target of the hematopoietic progenitor kinase 1 (HPK-1). Interestingly, either S376A mutation or HPK-1 knockdown resulted in increased TCR-induced tyrosine phosphorylation of SLP-76 and phospholipase C-γ1. Moreover, an SLP-76–S376A mutant induced higher interleukin 2 gene transcription than wild-type SLP-76. These data reveal a novel negative feedback loop involving HPK-1–dependent serine phosphorylation of SLP-76 and 14-3-3 protein recruitment, which tunes T cell activation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression

Laure Guenin-Macé; Florent Carrette; François Asperti-Boursin; Agnès Le Bon; Laxmee Caleechurn; Vincenzo Di Bartolo; Arnaud Fontanet; Georges Bismuth; Caroline Demangel

Mycolactone is a macrolide produced by Mycobacterium ulcerans with immunomodulatory properties. Here, we describe that in mouse, mycolactone injection led to a massive T-cell depletion in peripheral lymph nodes (PLNs) that was associated with defective expression of L-selectin (CD62-L). Importantly, preexposure to mycolactone impaired the capacity of T cells to reach PLNs after adoptive transfer, respond to chemotactic signals, and expand upon antigenic stimulation in vivo. We found that mycolactone-induced suppression of CD62-L expression by human primary T cells was induced rapidly at both the mRNA and protein levels and correlated with the reduced expression of one miRNA: let-7b. Notably, silencing of let-7b was sufficient to inhibit CD62-L gene expression. Conversely, its overexpression tended to up-regulate CD62-L and counteract the effects of mycolactone. Our results identify T-cell homing as a biological process targeted by mycolactone. Moreover, they reveal a mechanism of control of CD62-L expression involving the miRNA let-7b.

Collaboration


Dive into the Vincenzo Di Bartolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge