Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vindhya Amarasinghe is active.

Publication


Featured researches published by Vindhya Amarasinghe.


Nature | 2014

The genome of Eucalyptus grandis

Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Nucleic Acids Research | 2014

Gramene 2013: comparative plant genomics resources

Marcela K. Monaco; Joshua C. Stein; Sushma Naithani; Sharon Wei; Palitha Dharmawardhana; Sunita Kumari; Vindhya Amarasinghe; Ken Youens-Clark; James Thomason; Justin Preece; Shiran Pasternak; Andrew Olson; Yinping Jiao; Zhenyuan Lu; Daniel M. Bolser; Arnaud Kerhornou; Daniel M. Staines; Brandon Walts; Guanming Wu; Peter D'Eustachio; Robin Haw; David Croft; Paul J. Kersey; Lincoln Stein; Pankaj Jaiswal; Doreen Ware

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.


Nucleic Acids Research | 2016

Gramene 2016: comparative plant genomics and pathway resources

Marcela K. Tello-Ruiz; Joshua C. Stein; Sharon Wei; Justin Preece; Andrew Olson; Sushma Naithani; Vindhya Amarasinghe; Palitha Dharmawardhana; Yinping Jiao; Joseph Mulvaney; Sunita Kumari; Kapeel Chougule; Justin Elser; Bo Wang; James Thomason; Daniel M. Bolser; Arnaud Kerhornou; Brandon Walts; Nuno A. Fonseca; Laura Huerta; Maria Keays; Y. Amy Tang; Helen Parkinson; Antonio Fabregat; Sheldon J. McKay; Joel Weiser; Peter D'Eustachio; Lincoln Stein; Robert Petryszak; Paul J. Kersey

Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBIs Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramenes archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials.


The Plant Genome | 2013

Maize Metabolic Network Construction and Transcriptome Analysis

Marcela K. Monaco; Taner Z. Sen; Palitha Dharmawardhana; Liya Ren; Mary L. Schaeffer; Sushma Naithani; Vindhya Amarasinghe; James Thomason; Lisa C. Harper; Jack M. Gardiner; Ethalinda K. S. Cannon; Carolyn J. Lawrence; Doreen Ware; Pankaj Jaiswal

A framework for understanding the synthesis and catalysis of metabolites and other biochemicals by proteins is crucial for unraveling the physiology of cells. To create such a framework for Zea mays L. subsp. mays (maize), we developed MaizeCyc, a metabolic network of enzyme catalysts, proteins, carbohydrates, lipids, amino acids, secondary plant products, and other metabolites by annotating the genes identified in the maize reference genome sequenced from the B73 variety. MaizeCyc version 2.0.2 is a collection of 391 maize pathways involving 8889 enzyme mapped to 2110 reactions and 1468 metabolites. We used MaizeCyc to describe the development and function of maize organs including leaf, root, anther, embryo, and endosperm by exploring the recently published microarray‐based maize gene expression atlas. We found that 1062 differentially expressed metabolic genes mapped to 524 unique enzymatic reactions associated with 310 pathways. The MaizeCyc pathway database was created by running a library of evidences collected from the maize genome annotation, gene‐based phylogeny trees, and comparison to known genes and pathways from rice (Oryza sativa L.) and Arabidopsis thaliana (L.) Heynh. against the PathoLogic module of Pathway Tools. The network and the database that were also developed as a community resource are freely accessible online at http://maizecyc.maizegdb.org to facilitate analysis and promote studies on metabolic genes in maize.


Rice | 2013

A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress

Palitha Dharmawardhana; Liya Ren; Vindhya Amarasinghe; Marcela K. Monaco; James Thomason; Dean Ravenscroft; Susan R. McCouch; Doreen Ware; Pankaj Jaiswal

BackgroundFunctional annotations of large plant genome projects mostly provide information on gene function and gene families based on the presence of protein domains and gene homology, but not necessarily in association with gene expression or metabolic and regulatory networks. These additional annotations are necessary to understand the physiology, development and adaptation of a plant and its interaction with the environment.ResultsRiceCyc is a metabolic pathway networks database for rice. It is a snapshot of the substrates, metabolites, enzymes, reactions and pathways of primary and intermediary metabolism in rice. RiceCyc version 3.3 features 316 pathways and 6,643 peptide-coding genes mapped to 2,103 enzyme-catalyzed and 87 protein-mediated transport reactions. The initial functional annotations of rice genes with InterPro, Gene Ontology, MetaCyc, and Enzyme Commission (EC) numbers were enriched with annotations provided by KEGG and Gramene databases. The pathway inferences and the network diagrams were first predicted based on MetaCyc reference networks and plant pathways from the Plant Metabolic Network, using the Pathologic module of Pathway Tools. This was enriched by manually adding metabolic pathways and gene functions specifically reported for rice. The RiceCyc database is hierarchically browsable from pathway diagrams to the associated genes, metabolites and chemical structures. Through the integrated tool OMICs Viewer, users can upload transcriptomic, proteomic and metabolomic data to visualize expression patterns in a virtual cell. RiceCyc, along with additional species-specific pathway databases hosted in the Gramene project, facilitates comparative pathway analysis.ConclusionsHere we describe the RiceCyc network development and discuss its contribution to rice genome annotations. As a case study to demonstrate the use of RiceCyc network as a discovery environment we carried out an integrated bioinformatic analysis of rice metabolic genes that are differentially regulated under diurnal photoperiod and biotic stress treatments. The analysis of publicly available rice transcriptome datasets led to the hypothesis that the complete tryptophan biosynthesis and its dependent metabolic pathways including serotonin biosynthesis are induced by taxonomically diverse pathogens while also being under diurnal regulation. The RiceCyc database is available online for free access at http://www.gramene.org/pathway/.


International Journal for Parasitology | 2013

Three genes involved in the oxidative burst are closely linked in the genome of the snail, Biomphalaria glabrata☆

Michael S. Blouin; Kaitlin M. Bonner; Becky Cooper; Vindhya Amarasinghe; Ryan P. O’Donnell; Christopher J. Bayne

Allelic variation at the Cu-Zn superoxide dismutase (SOD1) locus has been shown to be associated with resistance of the snail, Biomphalaria glabrata, to infection by the trematode parasite, Schistosoma mansoni. SOD1 catalyses the production of hydrogen peroxide, a known cytotoxic component of the oxidative burst used in defence against pathogens. In our laboratory population of B. glabrata, the most resistant allele at SOD1 is over-expressed relative to the other two alleles. Because hydrogen peroxide also causes oxidative stress on host tissues, we hypothesised that over-expression of SOD1 might be compensated by epistatic interactions with other loci involved in oxidation-reduction (redox) pathways. Catalase, peroxiredoxins and glutathione peroxidases all degrade hydrogen peroxide. We tested whether alleles at each of these loci were in linkage disequilibrium with SOD1 in our population, as might be expected given strong epistatic selection. We found that SOD1, catalase (CAT) and a peroxiredoxin locus (PRX4) are in strong linkage disequilibrium in our population. We also found that these loci are tightly linked, within 1-2cM of each other, which explains the high linkage disequilibrium. This result raises the possibility that there is a linked cluster of redox genes, and perhaps other defence-relevant genes, in the B. glabrata genome. Whether epistatic interactions for fitness actually exist among these loci still needs to be tested. However the close physical linkage among SOD1, PRX4 and CAT, and subsequent high disequilibrium, makes such interactions a plausible hypothesis.


Nucleic Acids Research | 2017

Plant Reactome: a resource for plant pathways and comparative analysis

Sushma Naithani; Justin Preece; Peter D'Eustachio; Parul Gupta; Vindhya Amarasinghe; Palitha Dharmawardhana; Guanming Wu; Antonio Fabregat; Justin Elser; Joel Weiser; Maria Keays; Alfonso Munoz-Pomer Fuentes; Robert Petryszak; Lincoln Stein; Doreen Ware; Pankaj Jaiswal

Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX.


Canadian Journal of Fisheries and Aquatic Sciences | 2010

No evidence for large differences in genomic methylation between wild and hatchery steelhead (Oncorhynchus mykiss)

Michael S. Blouin; Virginie ThuillierV. Thuillier; Becky Cooper; Vindhya Amarasinghe; Laura CluzelL. Cluzel; Hitoshi Araki; Christoph Grunau


New Phytologist | 2015

The floral transcriptome of Eucalyptus grandis

Kelly J. Vining; Elisson Romanel; Rebecca C. Jones; Amy L. Klocko; Marcio Alves-Ferreira; Charles A. Hefer; Vindhya Amarasinghe; Palitha Dharmawardhana; Sushma Naithani; Martin Ranik; James Wesley-Smith; Luke Solomon; Pankaj Jaiswal; Alexander Andrew Myburg; Steven H. Strauss


Molecular Breeding | 2016

Low frequency of zinc-finger nuclease-induced mutagenesis in Populus

Haiwei Lu; Amy L. Klocko; Michael Dow; Cathleen Ma; Vindhya Amarasinghe; Steven H. Strauss

Collaboration


Dive into the Vindhya Amarasinghe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doreen Ware

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Thomason

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcela K. Monaco

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lincoln Stein

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge