Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Violette Da Cunha is active.

Publication


Featured researches published by Violette Da Cunha.


Molecular Microbiology | 2012

The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome.

Maria-José Lopez-Sanchez; Elisabeth Sauvage; Violette Da Cunha; Dominique Clermont; Elisoa Ratsima Hariniaina; Bruno Gonzalez-Zorn; Claire Poyart; Isabelle Rosinski-Chupin; Philippe Glaser

Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1‐C CRISPR2 is present in few strains but type 2‐A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre‐exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer‐associated motif‐shuffling demonstrated that the GG motif is sufficient to discriminate self and non‐self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II‐A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population.


Journal of Bacteriology | 2010

Genome Sequence of Streptococcus gallolyticus: Insights into Its Adaptation to the Bovine Rumen and Its Ability To Cause Endocarditis

Christophe Rusniok; Elisabeth Couvé; Violette Da Cunha; Rachida El Gana; Nora Zidane; Christiane Bouchier; Claire Poyart; Roland Leclercq; Patrick Trieu-Cuot; Philippe Glaser

Streptococcus gallolyticus (formerly known as Streptococcus bovis biotype I) is an increasing cause of endocarditis among streptococci and frequently associated with colon cancer. S. gallolyticus is part of the rumen flora but also a cause of disease in ruminants as well as in birds. Here we report the complete nucleotide sequence of strain UCN34, responsible for endocarditis in a patient also suffering from colon cancer. Analysis of the 2,239 proteins encoded by its 2,350-kb-long genome revealed unique features among streptococci, probably related to its adaptation to the rumen environment and its capacity to cause endocarditis. S. gallolyticus has the capacity to use a broad range of carbohydrates of plant origin, in particular to degrade polysaccharides derived from the plant cell wall. Its genome encodes a large repertoire of transporters and catalytic activities, like tannase, phenolic compounds decarboxylase, and bile salt hydrolase, that should contribute to the detoxification of the gut environment. Furthermore, S. gallolyticus synthesizes all 20 amino acids and more vitamins than any other sequenced Streptococcus species. Many of the genes encoding these specific functions were likely acquired by lateral gene transfer from other bacterial species present in the rumen. The surface properties of strain UCN34 may also contribute to its virulence. A polysaccharide capsule might be implicated in resistance to innate immunity defenses, and glucan mucopolysaccharides, three types of pili, and collagen binding proteins may play a role in adhesion to tissues in the course of endocarditis.


Nature Communications | 2014

Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline

Violette Da Cunha; Mark R. Davies; Pierre-Emmanuel Douarre; Isabelle Rosinski-Chupin; Immaculada Margarit; Sebastien Spinali; Tim Perkins; Pierre Lechat; Nicolas Dmytruk; Elisabeth Sauvage; Laurence Ma; Benedetta Romi; Magali Tichit; Maria-José Lopez-Sanchez; Stéphane Descorps-Declère; Erika Souche; Carmen Buchrieser; Patrick Trieu-Cuot; Ivan Moszer; Dominique Clermont; Domenico Maione; Christiane Bouchier; David J. McMillan; Julian Parkhill; John L. Telford; Gordan Dougan; Mark J. Walker; Matthew T. G. Holden; Claire Poyart; Philippe Glaser

Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates.


Molecular Microbiology | 2013

Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence

Aurélie Derré-Bobillot; Yuji Yamamoto; Pascale Kharrat; Elizabeth Couvé; Violette Da Cunha; Patrice Decker; Marie-Christophe Boissier; Frédéric Escartin; Bénédicte Cesselin; Philippe Langella; Luis G. Bermúdez-Humarán; Philippe Gaudu

Most bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene. When overproduced in Lactococcus lactis, the protein was found to be a divalent cation‐requiring, pH‐stable and heat‐stable nuclease that we named Nuclease A (NucA). Substitution of the histidine148 by alanine reduced nuclease activity of the GBS wild‐type strain, indicating that NucA is the major nuclease ex vivo. We determined that GBS is able to degrade the DNA matrix comprising the neutrophil extracellular trap (NET). The nucAH148A mutant was impaired for this function, implicating NucA in the virulence of GBS. In vivo infection studies confirmed that NucA is required for full infection, as the mutant strain allowed increased bacterial clearance from lung tissue and decreased mortality in infected mice. These results show that NucA is involved in NET escape and is needed for full virulence.


Molecular Microbiology | 2009

Atypical association of DDE transposition with conjugation specifies a new family of mobile elements.

Mathieu Brochet; Violette Da Cunha; Elisabeth Couvé; Christophe Rusniok; Patrick Trieu-Cuot; Philippe Glaser

We describe in Streptococcus agalactiae an atypical family of conjugative transposons named TnGBSs which associates DDE transposition and conjugation. We present evidence that the transposition of TnGBS2, the prototype of this family, is catalysed by a new class of DDE transposases that are widespread in Gram‐positive bacteria. Remarkably, transposition occurs in intergenic regions, 15 or 16 bp upstream the −35 sequence of promoters, minimizing the burden on the host cell and suggesting an association between transcription and transposition. Transposition catalyses the formation of a circular intermediate that is substrate for subsequent conjugative intercellular transfer. Conjugation is initiated at an origin of transfer by a transposon‐encoded relaxase. Whereas all integrative and conjugative elements described so far encode a phage‐related integrase, TnGBS2 is the first example of conjugative transposon whose recombination is mediated by a DDE transposase. The combination of DDE transposition with conjugation implies recombination constraints linked to the physical separation of donor and recipient molecules.


PLOS Genetics | 2017

Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes

Violette Da Cunha; Morgan Gaia; Danièle Gadelle; Arshan Nasir; Patrick Forterre

The eocyte hypothesis, in which Eukarya emerged from within Archaea, has been boosted by the description of a new candidate archaeal phylum, “Lokiarchaeota”, from metagenomic data. Eukarya branch within Lokiarchaeota in a tree reconstructed from the concatenation of 36 universal proteins. However, individual phylogenies revealed that lokiarchaeal proteins sequences have different evolutionary histories. The individual markers phylogenies revealed at least two subsets of proteins, either supporting the Woese or the Eocyte tree of life. Strikingly, removal of a single protein, the elongation factor EF2, is sufficient to break the Eukaryotes-Lokiarchaea affiliation. Our analysis suggests that the three lokiarchaeal EF2 proteins have a chimeric organization that could be due to contamination and/or homologous recombination with patches of eukaryotic sequences. A robust phylogenetic analysis of RNA polymerases with a new dataset indicates that Lokiarchaeota and related phyla of the Asgard superphylum are sister group to Euryarchaeota, not to Eukarya, and supports the monophyly of Archaea with their rooting in the branch leading to Thaumarchaeota.


PLOS Pathogens | 2013

The Abi-domain Protein Abx1 Interacts with the CovS Histidine Kinase to Control Virulence Gene Expression in Group B Streptococcus

Arnaud Firon; Asmaa Tazi; Violette Da Cunha; Sophie Brinster; Elisabeth Sauvage; Shaynoor Dramsi; Douglas T. Golenbock; Philippe Glaser; Claire Poyart; Patrick Trieu-Cuot

Group B Streptococcus (GBS), a common commensal of the female genital tract, is the leading cause of invasive infections in neonates. Expression of major GBS virulence factors, such as the hemolysin operon cyl, is regulated directly at the transcriptional level by the CovSR two-component system. Using a random genetic approach, we identified a multi-spanning transmembrane protein, Abx1, essential for the production of the GBS hemolysin. Despite its similarity to eukaryotic CaaX proteases, the Abx1 function is not involved in a post-translational modification of the GBS hemolysin. Instead, we demonstrate that Abx1 regulates transcription of several virulence genes, including those comprising the hemolysin operon, by a CovSR-dependent mechanism. By combining genetic analyses, transcriptome profiling, and site-directed mutagenesis, we showed that Abx1 is a regulator of the histidine kinase CovS. Overexpression of Abx1 is sufficient to activate virulence gene expression through CovS, overcoming the need for an additional signal. Conversely, the absence of Abx1 has the opposite effect on virulence gene expression consistent with CovS locked in a kinase-competent state. Using a bacterial two-hybrid system, direct interaction between Abx1 and CovS was mapped specifically to CovS domains involved in signal processing. We demonstrate that the CovSR two-component system is the core of a signaling pathway integrating the regulation of CovS by Abx1 in addition to the regulation of CovR by the serine/threonine kinase Stk1. In conclusion, our study reports a regulatory function for Abx1, a member of a large protein family with a characteristic Abi-domain, which forms a signaling complex with the histidine kinase CovS in GBS.


BMC Genomics | 2015

Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae

Isabelle Rosinski-Chupin; Elisabeth Sauvage; Odile Sismeiro; Adrien Villain; Violette Da Cunha; Marie-Elise Caliot; Marie-Agnès Dillies; Patrick Trieu-Cuot; Philippe Bouloc; Marie-Frédérique Lartigue; Philippe Glaser

BackgroundStreptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing.ResultsOur study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively.ConclusionsThis comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.


Archaea | 2016

Arguments Reinforcing the Three-Domain View of Diversified Cellular Life

Arshan Nasir; Kyung Mo Kim; Violette Da Cunha; Gustavo Caetano-Anollés

The archaeal ancestor scenario (AAS) for the origin of eukaryotes implies the emergence of a new kind of organism from the fusion of ancestral archaeal and bacterial cells. Equipped with this “chimeric” molecular arsenal, the resulting cell would gradually accumulate unique genes and develop the complex molecular machineries and cellular compartments that are hallmarks of modern eukaryotes. In this regard, proteins related to phagocytosis and cell movement should be present in the archaeal ancestor, thus identifying the recently described candidate archaeal phylum “Lokiarchaeota” as resembling a possible candidate ancestor of eukaryotes. Despite its appeal, AAS seems incompatible with the genomic, molecular, and biochemical differences that exist between Archaea and Eukarya. In particular, the distribution of conserved protein domain structures in the proteomes of cellular organisms and viruses appears hard to reconcile with the AAS. In addition, concerns related to taxon and character sampling, presupposing bacterial outgroups in phylogenies, and nonuniform effects of protein domain structure rearrangement and gain/loss in concatenated alignments of protein sequences cast further doubt on AAS-supporting phylogenies. Here, we evaluate AAS against the traditional “three-domain” world of cellular organisms and propose that the discovery of Lokiarchaeota could be better reconciled under the latter view, especially in light of several additional biological and technical considerations.


Microbial Drug Resistance | 2012

Rga, a RofA-like regulator, is the major transcriptional activator of the PI-2a pilus in Streptococcus agalactiae.

Shaynoor Dramsi; Sarah Dubrac; Yoan Konto-Ghiorghi; Violette Da Cunha; Elisabeth Couvé; Philippe Glaser; Elise Caliot; Michel Débarbouillé; Samuel Bellais; Patrick Trieu-Cuot; Michel-Yves Mistou

Rapid adaptation to changing environments is key in determining the outcome of infections caused by the opportunistic human pathogen Streptococcus agalactiae. We previously demonstrated that the RofA-like protein (RALP) regulators RogB and Rga activate their downstream divergently transcribed genes, that is, the pilus operon PI-2a and the serine-rich repeat encoding gene srr1, respectively. Characterization of the Rga regulon by microarray revealed that the PI-2a pilus was strongly controlled by Rga, a result confirmed at the protein level. Complementation experiments showed that the expression of Rga, but not RogB, in the double ΔrogB/Δrga mutant, or in the clinical strain 2603V/R displaying frameshift mutations in rogB and rga genes, is sufficient to restore wild-type expression levels of PI-2a pilus and Srr1. Biofilm formation was impaired in the Δrga and Δrga/rogB mutants and restored on complementation with rga. Paradoxically, adherence to intestinal epithelial cells was unchanged in the Δrga mutant. Finally, the existence of several clinical isolates mutated in rga highlights the concept of strain-specific regulatory networks.

Collaboration


Dive into the Violette Da Cunha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arshan Nasir

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge