Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viraj Singh is active.

Publication


Featured researches published by Viraj Singh.


Annals of Biomedical Engineering | 2010

Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

Paulette Spencer; Qiang Ye; Jonggu Park; Elizabeth M. Topp; Anil Misra; Orestes Marangos; Yong Wang; Brenda Bohaty; Viraj Singh; Fabio Sene; John Eslick; Kyle V. Camarda; J. Lawrence Katz

Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface.


Journal of Biomedical Materials Research Part B | 2010

Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives

Viraj Singh; Anil Misra; Orestes Marangos; Jonggu Park; Qiang Ye; Sarah L. Kieweg; Paulette Spencer

The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions.


Dental Materials | 2011

Fatigue life prediction of dentin-adhesive interface using micromechanical stress analysis

Viraj Singh; Anil Misra; Orestes Marangos; Jonggu Park; Qiang Ye; Sarah L. Kieweg; Paulette Spencer

OBJECTIVES The objective of this work was to develop a methodology for the prediction of fatigue life of the dentin-adhesive (d-a) interface. METHODS At the micro-scale, the d-a interface is composed of dissimilar material components. Under global loading, these components experience different local stress amplitudes. The overall fatigue life of the d-a interface is, therefore, determined by the material component that has the shortest fatigue life under local stresses. Multiple 3d finite element (FE) models were developed to determine the stress distribution within the d-a interface by considering variations in micro-scale geometry, material composition and boundary conditions. The results from these models were analyzed to obtain the local stress concentrations within each d-a interface component. By combining the local stress concentrations and experimentally determined stress versus number of cycle to failure (S-N) curves for the different material components, the overall fatigue life of the d-a interface was predicted. RESULTS The fatigue life was found to be a function of the applied loading amplitude, boundary conditions, microstructure and the mechanical properties of the material components of the d-a interface. In addition, it was found that the overall fatigue life of the d-a interface is not determined by the weakest material component. In many cases, the overall fatigue life was determined by the adhesive although exposed collagen was the weakest material component. Comparison of the predicted results with experimental data from the literature showed both qualitative and quantitative agreement. SIGNIFICANCE The methodology developed for fatigue life prediction can provide insight into the mechanisms that control degradation of the bond formed at the d-a interface.


Journal of Biomedical Materials Research Part B | 2012

Synthesis and evaluation of novel dental monomer with branched aromatic carboxylic acid group.

Jonggu Park; Qiang Ye; Viraj Singh; Sarah L. Kieweg; Anil Misra; Paulette Spencer

A new glycerol-based dimethacrylate monomer with an aromatic carboxylic acid, 2-((1,3-bis(methacryloyloxy)propan-2-yloxy)carbonyl)benzoic acid (BMPB), was synthesized, characterized, and proposed as a possible dental co-monomer for dentin adhesives. Dentin adhesives containing 2-hydroxyethyl methacrylate (HEMA) and 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (BisGMA) in addition to BMPB were formulated with water at 0, 5, 10, and 15 wt % to simulate wet, oral conditions, and photo-polymerized. Adhesives were characterized with regard to viscosity, real-time photopolymerization behavior, dynamic mechanical analysis, and microscale 3D internal morphologies and compared with HEMA/BisGMA controls. When formulated under wet conditions, the experimental adhesives showed lower viscosities (0.04-0.07 Pa s) as compared to the control (0.09-0.12 Pa s). The experimental adhesives showed higher glass transition temperature (146-157°C), degree of conversion (78-89%), and rubbery moduli (33-36 MPa), and improved water miscibility (no voids) as compared to the controls (123-135°C, 67-71%, 15-26 MPa, and voids, respectively). The enhanced properties of these adhesives suggest that BMPB with simple, straightforward synthesis is a promising photocurable co-monomer for dental restorative materials.


Journal of Biomedical Materials Research Part B | 2013

Mechanical properties of methacrylate‐based model dentin adhesives: Effect of loading rate and moisture exposure

Viraj Singh; Anil Misra; Ranganathan Parthasarathy; Qiang Ye; Jonggu Park; Paulette Spencer

The aim of this study is to investigate the mechanical behavior of model methacrylate-based dentin adhesives under conditions that simulate the wet oral environment. A series of monotonic and creep experiments were performed on rectangular beam samples of dentin adhesive in three-point bending configuration under different moisture conditions. The monotonic test results show a significant effect of loading rate on the failure strength and the linear limit (yield point) of the stress-strain response. In addition, these tests show that the failure strength is low, and the failure occurs at a smaller deformation when the test is performed under continuously changing moisture conditions. The creep test results show that under constant moisture conditions, the model dentin adhesives can have a viscoelastic response under certain low loading levels. However, when the moisture conditions vary under the same low loading levels, the dentin adhesives have an anomalous creep response accompanied by large secondary creep and high strain accumulation.


Journal of Biomedical Materials Research Part A | 2015

Viscoelastic properties of collagen–adhesive composites under water‐saturated and dry conditions

Viraj Singh; Anil Misra; Ranganathan Parthasarathy; Qiang Ye; Paulette Spencer

To investigate the time- and rate-dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and the neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and the collagen. As the adhesive-collagen composites are a part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least four elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristic time scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate-dependent elastic modulus.


Acta Biomaterialia | 2014

Swelling equilibrium of dentin adhesive polymers formed on the water-adhesive phase boundary: experiments and micromechanical model.

Anil Misra; Ranganathan Parthasarathy; Qiang Ye; Viraj Singh; Paulette Spencer

During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change, which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases are characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using a granular micromechanics-based model incorporating poro-mechanical effects and polymer-solvent thermodynamics. The variation in the model parameters and model-predicted polymer properties was studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of the hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers.


Archive | 2013

Dentin/Adhesive Interface in Teeth

Paulette Spencer; Qiang Ye; Jonggu Park; Ranganathan Parthasarathy; Orestes Marangos; Anil Misra; Brenda Bohaty; Viraj Singh; Jennifer S. Laurence

Clinical studies have demonstrated an alarmingly high failure rate for posterior composite dental restorations. The premature failure of moderate-to-large composite restorations can be traced to a breakdown of the bond at the tooth surface/composite material interface and increased levels of cariogenic bacteria at the perimeter of these materials. In this chapter, we discuss the dentin/adhesive bond, with a focus on the failure of current adhesives to consistently seal and adhere to the dentin. The concept of forming a resin-reinforced hybrid layer for improved adhesion is presented. The complex role of water in dentin/adhesive bonding is then described. Finally, mechanisms leading to mechanical property changes at the interface are discussed.


Journal of Nanomechanics and Micromechanics | 2013

Poromechanics Parameters of Fluid-Saturated Chemically Active Fibrous Media Derived from a Micromechanical Approach

Anil Misra; Ranganathan Parthasarathy; Viraj Singh; Paulette Spencer

The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hills volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hills Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.


Journal of Biomedical Materials Research Part B | 2016

Development of methacrylate/silorane hybrid monomer system: Relationship between photopolymerization behavior and dynamic mechanical properties

Linyong Song; Qiang Ye; Xueping Ge; Viraj Singh; Anil Misra; Jennifer S. Laurence; Cindy L. Berrie; Paulette Spencer

Resin chemistries for dental composite are evolving as noted by the introduction of silorane-based composites in 2007. This shift in the landscape from methacrylate-based composites has fueled the quest for versatile methacrylate-silorane adhesives. The objective of this study was to evaluate the polymerization behavior and structure/property relationships of methacrylate-silorane hybrid systems. Amine compound ethyl-4-(dimethylamino) benzoate (EDMAB) or silane compound tris(trimethylsilyl) silane (TTMSS) was selected as coinitiators. The mechanical properties of the copolymer were improved significantly at low concentrations (15, 25, or 35 wt %) of silorane when EDMAB was used as coinitiator. The rubbery moduli of these experimental copolymers were increased by up to 260%, compared with that of the control (30.8 ± 1.9 MPa). Visible phase separation appeared in these formulations if the silorane concentrations in the formulations were 50-75 wt %. The use of TTMSS as coinitiator decreased the phase separation, but there was a concomitant decrease in mechanical properties. In the neat methacrylate formulations, the maximum rates of free-radical polymerization with EDMAB or TTMSS were 0.28 or 0.06 s(-1) , respectively. In the neat silorane resin, the maximum rates of cationic ring-opening polymerization with EDMAB or TTMSS were 0.056 or 0.087 s(-1) , respectively. The phase separation phenomenon may be attributed to differences in the rates of free-radical polymerization of methacrylates and cationic ring-opening polymerization of silorane. In the hybrid systems, free-radical polymerization initiated with EDMAB led to higher crosslink density and better mechanical properties under dry/wet conditions. These beneficial effects were, however, associated with an increase in heterogeneity in the network structure.

Collaboration


Dive into the Viraj Singh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Ye

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brenda Bohaty

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge