Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paulette Spencer is active.

Publication


Featured researches published by Paulette Spencer.


Annals of Biomedical Engineering | 2010

Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

Paulette Spencer; Qiang Ye; Jonggu Park; Elizabeth M. Topp; Anil Misra; Orestes Marangos; Yong Wang; Brenda Bohaty; Viraj Singh; Fabio Sene; John Eslick; Kyle V. Camarda; J. Lawrence Katz

Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface.


Journal of Dental Research | 2008

In vitro Performance of Nano-heterogeneous Dentin Adhesive

Qiang Ye; Jonggu Park; Elizabeth M. Topp; Yong Wang; Anil Misra; Paulette Spencer

Water is ubiquitous in the mouths of healthy individuals and routinely interferes with efforts to bond restorations to dental tissues. Our previous studies using tapping-mode atomic force microscopy (TMAFM) have shown that nanophase separation is a general feature of cross-linked polymethacrylates photocured in the presence of water. To explore the relationship between nanophase separation in dentin adhesives and their long-term mechanical properties, we evaluated model adhesives after 3 months of aqueous storage. The degree of contrast in the TMAFM phase image depended on the formulations used, ranging from ‘not observable’ to ‘very strong’. Correspondingly, the mechanical properties of these model adhesives varied from ‘minimal change’ to ‘significant depreciation’. The results support the hypothesis that a high degree of heterogeneity at the nano-scale is associated with poor mechanical durability in these model adhesives.


Dental Materials | 2011

The influence of chemical structure on the properties in methacrylate-based dentin adhesives

Jonggu Park; John Eslick; Qiang Ye; Anil Misra; Paulette Spencer

OBJECTIVESnThe objective of this study was to investigate the influence of the chemical structure of methacrylate monomers used in dentin adhesives on degree of conversion (DC), water sorption, and dynamic mechanical properties.nnnMATERIALS AND METHODSnExperimental adhesives containing 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA), 2-hydroxyethyl methacrylate (HEMA), and co-monomer, 30/45/25 (w/w) were photo-polymerized. Ethyleneglycol dimethacrylate (EGDM), diethyleneglycol dimethacrylate (DEGDM), triethyleneglycol dimethacrylate (TEGDMA), 1,3-glycerol dimethacrylate (GDM), and glycerol trimethacrylate (GTM) were used as a co-monomer. The adhesives were characterized with regard to DC, water sorption, and dynamic mechanical analysis and compared to control adhesive [HEMA/BisGMA, 45/55 (w/w)].nnnRESULTSnDC and water sorption increased with an increase in the number of ethylene glycol units in the monomer. Experimental adhesive containing GDM showed significantly higher storage moduli (p<0.05) in both dry and wet samples than experimental adhesives containing EGDM or DEGDM. The rubbery moduli of adhesives containing GDM and GTM were found to be significantly greater (p<0.05) than that of the control. Adhesives containing GTM exhibited the widest tanδ curves, indicating the greatest structural heterogeneity.nnnSIGNIFICANCEnThe hydrophilicity, functionality and size of monomers in dentin adhesives affected the water sorption, solubility, crosslink density and heterogeneity of the polymer network. The experimental adhesives containing GDM and GTM showed higher rubbery moduli, indicating higher crosslink density accompanied by a decrease in the homogeneity of the polymer network structure.


Journal of Biomedical Materials Research Part B | 2009

Nanophase Separation of Polymers Exposed to Simulated Bonding Conditions

Qiang Ye; Yong Wang; Paulette Spencer

Under in vivo conditions, there is little control over the amount of water left on the tooth during dentin bonding. As a result, it is possible to leave the dentin surface so wet that the adhesive actually undergoes physical separation into hydrophobic- and hydrophilic-rich phases. Using tapping mode atomic force microscopy/PhaseImaging technique, nanosized phases with worm-like features were found on the surface of model HEMA/BisGMA dentin adhesives cured in the presence of varying concentrations of water. The phase contrast became evident with the increase of water concentration in the initial adhesive formulation and varied with the ratio of hydrophilic/hydrophobic composition. Oversaturated water droplets of variable sizes may accumulate as micro-voids within the hydrophilic and hydrophobic polymer phases. The phase domains were also identified following ethanol-etching in combination with SEM/AFM techniques.


Dental Materials | 2009

Water sorption and dynamic mechanical properties of dentin adhesives with a urethane-based multifunctional methacrylate monomer.

Jonggu Park; Qiang Ye; Elizabeth M. Topp; Anil Misra; Paulette Spencer

OBJECTIVESnOur previous study showed the synthesis and characterization of a novel urethane-linked trimethacrylate monomer for use as a co-monomer in dentin adhesives. The objective of this work was to further investigate the performance of dentin adhesives containing a new monomer, with particular emphasis on the water sorption and viscoelastic behavior of the crosslinked networks.nnnMATERIALS AND METHODSnDentin adhesives contained 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA), 2-hydroxyethyl methacrylate (HEMA), and a new multifunctional methacrylate with urethane-linked groups-1,1,1-tri-[4-(methacryloxyethylaminocarbonyloxy)-phenyl]ethane (MPE) and were photo-polymerized in the presence or absence of water. Adhesives were characterized with regard to degree of conversion (DC), viscosity, water sorption/solubility, and dynamic mechanical analysis (DMA) and compared with BisGMA/HEMA controls.nnnRESULTSnThe experimental adhesives exhibited DC and solubility comparable to that of the control, regardless of the presence or absence of water. All the experimental adhesives tested showed less water sorption, lower tandelta peak heights, and higher rubbery modulus than the control.nnnSIGNIFICANCEnDentin adhesives containing a new multifunctional methacrylate showed better dynamic thermomechanical properties and water sorption relative to controls, without compromising DC and solubility. Thus, MPE, when included as a component of methacrylate dentin adhesives, may provide enhanced durability in the moist environment of the mouth.


Journal of Dental Research | 2014

Proteins, Pathogens, and Failure at the Composite-Tooth Interface:

Paulette Spencer; Qiang Ye; Anil Misra; Sérgio Eduardo de Paiva Gonçalves; Jennifer S. Laurence

In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.


Dental Materials | 2009

Effect of photoinitiators on the in vitro performance of a dentin adhesive exposed to simulated oral environment

Qiang Ye; Jonggu Park; Elizabeth M. Topp; Paulette Spencer

OBJECTIVESnOur previous study showed poor mechanical durability and nano-sized heterogeneities in cross-linked dentin adhesives cured in the presence of water. To further explore the relationship between nano-scale heterogeneities and the long-term mechanical properties of dentin adhesives, the properties of model dentin adhesives polymerized using hydrophilic photoinitiators were compared with those of adhesives polymerized using hydrophobic camphorquinone-based photoinitiators.nnnMETHODSnThe model adhesives consisted of HEMA and bisGMA with a mass ratio of 45/55 and were photopolymerized in the presence of 8.3 mass% water. The photo-polymerization of the model adhesives during irradiation was monitored in situ using a Perkin-Elmer Spectrum One FTIR in the ATR sampling mode. The tensile properties were determined for all samples after dry storage at room temperature, or after aqueous storage in distilled deionized water.nnnRESULTSnThere was a continuous decline of mechanical properties for the specimens cured in the presence of water during 3 months aqueous storage, especially for the specimens that contained hydrophobic photoinitiators. The multi-component systems containing hydrophilic photoinitiators were shown to produce superior model dental adhesives when these materials are cured in the presence of water.nnnSIGNIFICANCEnDesigning initiator systems to perform in this heterogeneous environment may improve the mechanical performance of dentin adhesives, as the results presented here indicate.


Journal of Biomedical Materials Research Part A | 2009

Effect of photoinitiator system and water content on dynamic mechanical properties of a light‐cured bisGMA/HEMA dental resin

Jonggu Park; Qiang Ye; Elizabeth M. Topp; Anil Misra; Sarah L. Kieweg; Paulette Spencer

The selection of an appropriate photoinitiator system is critical for efficient polymerization of dental resins with satisfactory mechanical and physical properties. The purpose of this study was to evaluate the influence of adding an iodonium salt to two-component photoinitiator systems. Four photoinitiator systems were included in a model bisGMA/HEMA resin and used to prepare samples at different water contents; the dynamic mechanical properties and the final degree of conversion of the samples were then characterized. Addition of the iodonium salt to the two-component photoinitiator systems increased the final degree of conversion, glass transition temperature, rubbery modulus, and crosslink density. The photoinitiator system containing ethyl-4-(dimethylamino) benzoate as a coinitiator and the iodonium salt exhibited the highest rubbery modulus. The enhanced properties in the presence of the iodonium salt can be attributed to the production of an active phenyl radical with regeneration of the original camphorquinone, which may increase the compatibility between monomers and initiators, especially in the presence of water. The results support the hypothesis that a photoinitiator system containing an iodonium salt can increase both mechanical properties and final conversion of model resin polymerized in the presence of water.


Journal of Biomedical Materials Research Part B | 2009

Enzymatic Biodegradation of HEMA/BisGMA Adhesives Formulated With Different Water Content

Elisabet L. Kostoryz; Kiran Dharmala; Qiang Ye; Yong Wang; Jesse Huber; Jonggu Park; Grant Snider; J. Lawrence Katz; Paulette Spencer

Dentin adhesives may undergo phase separation when bonding to wet demineralized dentin. We hypothesized that adhesives exhibiting phase separation will experience enhanced biodegradation of methacrylate ester groups. The objective of this project was to study the effect of enzyme-exposure on the release of methacrylic acid (MAA) and 2-hydroxyethyl methacrylate (HEMA) from adhesives formulated under conditions simulating wet bonding. HEMA/bisGMA(2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane), 45/55 w/w ratio, was formulated with different water content: 0 Wt % (A00), 8 wt % (A08), and 16 wt % (A16). After a three day prewash, adhesive discs were incubated with/without porcine liver esterase (PLE) in phosphate buffer (PB, pH 7.4) at 37 degrees C for 8 days. Supernatants were collected daily and analyzed for MAA and HEMA by HPLC. For all formulations, daily MAA release in the presence of PLE was increased compared to MAA release in PB. HEMA release in the presence of PLE was not detected while HEMA release was consistently measured in PB. A08 and A16 released significantly larger amounts of HEMA compared to A00. Analysis of the cumulative release of analytes showed that the leachables in PLE was significantly increased (p < 0.05) as compared with that released in PB indicating that MAA release was not only formed from unreacted monomers but from pendant groups in the polymer network. However, the levels of analytes HEMA in PB or MAA in PLE were increased in A08 and A16 as compared with A00, which suggests that there could be a greater loss of material in HEMA/bisGMA adhesives that experience phase separation under wet bonding conditions.


Journal of Biomedical Materials Research Part B | 2009

Dynamic mechanical analysis and esterase degradation of dentin adhesives containing a branched methacrylate

Jonggu Park; Qiang Ye; Elizabeth M. Topp; Chi H. Lee; Elisabet L. Kostoryz; Anil Misra; Paulette Spencer

A study of the dynamic mechanical properties and the enzymatic degradation of new dentin adhesives containing a multifunctional methacrylate are described. Adhesives contained 2-hydroxyethyl methacrylate, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane, and a new multifunctional methacrylate with a branched side chain-trimethylolpropane mono allyl ether dimethacrylate (TMPEDMA). Adhesives were photopolymerized in the presence of 0, 8, and 16 wt % water to simulate wet bonding conditions in the mouth and compared with control adhesives. The degree of conversion as a function of irradiation time was comparable for experimental and control adhesives. In dynamic mechanical analysis, broad tan delta peaks were obtained for all samples, indicating that the polymerized networks are heterogeneous; comparison of the full-width-at-half-maximum values obtained from the tan delta curves indicated increased heterogeneity for samples cured in the presence of water and/or containing TMPEDMA. The experimental adhesive showed higher T(g) and higher rubbery modulus indicating increased crosslink density when compared with the control. The improvement in esterase resistance afforded by adhesives containing the TMPEDMA is greater when this material is photopolymerized in the presence of water, suggesting better performance in the moist environment of the mouth. The improved esterase resistance of the new adhesive could be explained in terms of the densely crosslinked network structure and/or the steric hindrance of branched alkyl side chains.

Collaboration


Dive into the Paulette Spencer's collaboration.

Top Co-Authors

Avatar

Qiang Ye

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge