Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginia Alvarez-García is active.

Publication


Featured researches published by Virginia Alvarez-García.


British Journal of Cancer | 2009

Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells

Carlos Martínez-Campa; Alicia González; M. D. Mediavilla; Carolina Alonso-González; Virginia Alvarez-García; Emilio J. Sánchez-Barceló; Samuel Cos

Background:Melatonin reduces the development of breast cancer interfering with oestrogen-signalling pathways, and also inhibits aromatase activity and expression. Our objective was to study the promoters through which melatonin modifies aromatase expression, evaluate the ability of melatonin to regulate cyclooxygenases and assess whether the effects of melatonin are related to its effects on intracellular cAMP, in MCF-7 cells.Methods:Total aromatase mRNA, aromatase mRNA promoter regions and cyclooxygenases mRNA expression were determined by real-time RT–PCR. PGE2 and cAMP were measured by kits.Results:Melatonin downregulated the gene expression of the two major specific aromatase promoter regions, pII and pI.3, and also that of the aromatase promoter region pI.4. Melatonin 1 nM was able to counteract the stimulatory effect of tetradecanoyl phorbol acetate on PGE2 production and inhibit COX-2 and COX-1 mRNA expression. Melatonin 1 nM elicited a parallel time-dependent decrease in both cyclic AMP formation and aromatase mRNA expression.Conclusions:This study shows that melatonin inhibits aromatase activity and expression by regulating the gene expression of specific aromatase promoter regions. A possible mechanism for these effects would be the regulation by melatonin of intracellular cAMP levels, mediated by an inhibition of cyclooxygenase activity and expression.


Journal of Pineal Research | 2013

Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells

Virginia Alvarez-García; Alicia González; Carolina Alonso-González; Carlos Martínez-Campa; Samuel Cos

Melatonin exerts oncostatic effects on breast cancer by interfering with the estrogen‐signaling pathways. Melatonin reduces estrogen biosynthesis in human breast cancer cells, surrounding fibroblasts and peritumoral endothelial cells by regulating cytokines that influence tumor microenvironment. This hormone also exerts antiangiogenic activity in tumoral tissue. In this work, our objective was to study the role of melatonin on the regulation of the vascular endothelial growth factor (VEGF) in breast cancer cells. To accomplish this, we cocultured human breast cancer cells (MCF‐7) with human umbilical vein endothelial cells (HUVECs). VEGF added to the cultures stimulated the proliferation of HUVECs and melatonin (1 mm) counteracted this effect. Melatonin reduced VEGF production and VEGF mRNA expression in MCF‐7 cells. MCF‐7 cells cocultured with HUVECs stimulated the endothelial cells proliferation and increased VEGF levels in the culture media. Melatonin counteracted both stimulatory effects on HUVECs proliferation and on VEGF protein levels in the coculture media. Conditioned media from MCF‐7 cells increased HUVECs proliferation, and this effect was significantly counteracted by anti‐VEGF and 1 mm melatonin. All these findings suggest that melatonin may play a role in the paracrine interactions between malignant epithelial cells and proximal endothelial cells through a downregulatory action on VEGF expression in human breast cancer cells, which decrease the levels of VEGF around endothelial cells. Lower levels of VEGF could be important in reducing the number of estrogen‐producing cells proximal to malignant cells as well as decreasing tumoral angiogenesis.


Journal of Pineal Research | 2012

Melatonin interferes in the desmoplastic reaction in breast cancer by regulating cytokine production

Virginia Alvarez-García; Alicia González; Carolina Alonso-González; Carlos Martínez-Campa; Samuel Cos

Abstract:  Melatonin exerts oncostatic effects on breast cancer by interfering with the estrogen signaling pathways. Melatonin inhibits aromatase enzyme in breast cancer cells and fibroblasts. In addition, melatonin stimulates the adipogenic differentiation of fibroblasts. Our objective was to study whether melatonin interferes in the desmoplastic reaction by regulating some factors secreted by malignant cells, tumor necrosis factor (TNF)‐α, interleukin (IL)‐11, and interleukin (IL)‐6. To accomplish this, we co‐cultured 3T3‐L1 cells with MCF‐7 cells. The addition of breast cancer cells to the co‐cultures inhibited the differentiation of 3T3‐L1 preadipocytes to mature adipocytes, by reducing the intracytoplasmic triglyceride accumulation, an indicator of adipogenic differentiation, and also stimulated their aromatase activity. Melatonin counteracted the inhibitory effect on adipocyte differentiation and aromatase activity induced by MCF‐7 cells in 3T3‐L1 cells. The levels of cytokines in the co‐culture media were 10 times those found in culture of 3T3‐L1 cells alone. Melatonin decreased the concentrations of cytokines in the media and counteracted the stimulatory effect induced by MCF‐7 cells on the cytokine levels. One millimolar melatonin induced a reduction in TNF‐α, IL‐6, and IL‐11 mRNA expression in MCF‐7 and 3T3‐L1 cells. The findings suggest that melatonin may play a role in the desmoplastic reaction in breast cancer through a downregulatory action on the expression of antiadipogenic cytokines, which decrease the levels of these cytokines. Lower levels of cytokines stimulate the differentiation of fibroblasts and decrease both aromatase activity and expression, thereby reducing the number of estrogen‐producing cells proximal to malignant cells.


Microvascular Research | 2013

Antiangiogenic effects of melatonin in endothelial cell cultures

Virginia Alvarez-García; Alicia González; Carolina Alonso-González; Carlos Martínez-Campa; Samuel Cos

Endothelial cells represent one of the critical cellular elements in tumor microenvironment playing a crucial role in the growth and progression of cancer through controlling angiogenesis. Vascular endothelial growth factor (VEGF) produced from tumor cells is essential for the expansion of breast cancer and may function in both paracrine and autocrine manners to promote proliferation, growth, survival and migration of endothelial cells. Since melatonin regulates tumor microenvironment by decreasing the secretion of VEGF by malignant epithelial cells and also regulates VEGF expression in human breast cancer cells, the aim of the present study was to investigate the anti-angiogenic activity of melatonin against the pro-angiogenic effects of breast cancer cells. In this work, we demonstrate that melatonin strongly inhibited the proliferation as well as invasion/migration of human umbilical vein endothelial cells (HUVECs). Melatonin disrupted tube formation and counteracted the VEGF-stimulated tubular network formation by HUVEC. In addition, conditioned media collected from human breast cancer cells were angiogenically active and stimulated tubule length formation and this effect was significantly counteracted by the addition of anti-VEGF or melatonin. Melatonin also disintegrated preformed capillary network. All these findings demonstrate that melatonin may play a role in the paracrine interactions that take place between malignant epithelial cells and proximal endothelial cells. Melatonin could be important in reducing endothelial cell proliferation, invasion, migration and tube formation, through a downregulatory action on VEGF. Taken together, our findings suggest that melatonin could potentially be beneficial as an antiangiogenic agent in breast cancer with possible future clinical applications.


Journal of Pineal Research | 2012

Melatonin promotes differentiation of 3T3-L1 fibroblasts.

Alicia González; Virginia Alvarez-García; Carlos Martínez-Campa; Carolina Alonso-González; Samuel Cos

Abstract:  Melatonin inhibits the genesis and growth of breast cancer by interfering at different levels in the estrogen‐signaling pathways. Melatonin inhibits aromatase activity and expression in human breast cancer cells, thus behaving as a selective estrogen enzyme modulator. As the adipose tissue adjacent to the tumor seems to account for most aromatase expression and enzyme activity in breast tumors and also mediates the desmoplastic reaction or accumulation of undifferentiated fibroblasts around malignant epithelial cells, in this work, we studied the effects of melatonin on the conversion of preadipocytes (3T3‐L1) into adipocytes and on the capability of these cells to synthesize estrogens by regulating the expression and enzyme activity of aromatase, one of the main enzymes that participates in the synthesis of estrogens in the peritumoral adipose tissue. Thus, in both differentiating and differentiated 3T3‐L1 adipocytes, high concentrations of melatonin increased intracytoplasmic triglyceride accumulation, an indicator of adipogenic differentiation. Melatonin (1 mm) significantly increased the expression of both CCAAT/enhancer‐binding protein α and peroxisome proliferator‐activated receptor γ, two main regulators of terminal adipogenesis, in 3T3‐L1 cells. The presence of melatonin during differentiation also induced a parallel reduction in aromatase expression and activity and expression of the cells. The effects of melatonin were reversed by luzindole, a melatonin receptor antagonist, indicating that melatonin acts through known receptor‐mediated mechanisms. These findings suggest that, in human breast tumors, melatonin could stimulate the differentiation of fibroblasts and reduce the aromatase activity and expression in both fibroblasts and adipocytes, thereby reducing the number of estrogen‐producing cells proximal to malignant cells.


Oncology Reports | 2013

Melatonin modulates aromatase activity and expression in endothelial cells.

Virginia Alvarez-García; Alicia González; Carlos Martínez-Campa; Carolina Alonso-González; Samuel Cos

Melatonin is known to suppress the development of endocrine-responsive breast cancers by interacting with the estrogen signaling pathways. Paracrine interactions between malignant epithelial cells and proximal stromal cells are responsible for local estrogen biosynthesis. In human breast cancer cells and peritumoral adipose tissue, melatonin downregulates aromatase, which transforms androgens into estrogens. The presence of aromatase on endothelial cells indicates that endothelial cells may contribute to tumor growth by producing estrogens. Since human umbilical vein endothelial cells (HUVECs) express both aromatase and melatonin receptors, the aim of the present study was to evaluate the ability of melatonin to regulate the activity and expression of aromatase on endothelial cells, thus, modulating local estrogen biosynthesis. In the present study, we demonstrated that melatonin inhibits the growth of HUVECs and reduces the local biosynthesis of estrogens through the downregulation of aromatase. These results are supported by three lines of evidence. Firstly, 1 mM of melatonin counteracted the testosterone-induced cell proliferation of HUVECs, which is dependent on the local biosynthesis of estrogens from testosterone by the aromatase activity of the cells. Secondly, we found that 1 mM of melatonin reduced the aromatase activity of HUVECs. Finally, by real‑time RT-PCR, we demonstrated that melatonin significantly downregulated the expression of aromatase as well as its endothelial-specific aromatase promoter region I.7. We conclude that melatonin inhibits aromatase activity and expression in HUVECs by regulating gene expression of specific aromatase promoter regions, thereby reducing the local production of estrogens.


Current Cancer Drug Targets | 2010

In Vivo Inhibition of the Estrogen Sulfatase Enzyme and Growth of DMBA-Induced Mammary Tumors by Melatonin

Alicia González; Virginia Alvarez-García; Carlos Martínez-Campa; M. D. Mediavilla; Carolina Alonso-González; Emilio J. Sánchez-Barceló; Samuel Cos

Melatonin inhibits the growth of different kinds of neoplasias, especially breast cancer, by interacting with estrogen-responsive pathways, thus behaving as an antiestrogenic hormone. Recently, we described that melatonin reduces sulfatase expression and activity in MCF-7 human breast cancer cells, thus modulating the local estrogen biosynthesis. In this study, to investigate the in vivo sulfatase-inhibitory properties of melatonin, this indoleamine was administered to ovariectomized rats bearing DMBA-induced mammary tumors, and treated with estrone sulfate. In castrated animals, the growth of estrogen-sensitive mammary tumors depends on the local conversion of biologically inactive estrogens to bioactive unconjugated estrogens. Ovariectomy significantly reduced the size and the number of the tumors while the administration of estrone sulfate to ovariectomized animals stimulated tumor growth, an effect which was suppressed by melatonin. The uterine weight of ovariectomized rats, which depends on the local synthesis of estrogens, was increased by estrone sulfate, except in those animals which were also treated with melatonin. The growth-stimulatory effects of estrone sulfate on the uterus and tumors depend exclusively on locally formed estrogens, since no changes in serum estradiol were appreciated in estrone sulfate-treated rats. Melatonin counteracted the stimulatory effects of estrone sulfate on sulfatase activity and expression and incubation with melatonin decreased the sulfatase activity of tumors from control animals. Animals treated with melatonin had the same survival probability as the castrated animals and significantly higher than the uncastrated. We conclude that melatonin could exert its antitumoral effects on hormone-dependent mammary tumors by down-regulating the sulfatase pathway of the tumoral tissue.


Oncology Letters | 2014

Melatonin modulation of crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer (Review).

Samuel Cos; Virginia Alvarez-García; Alicia González; Carolina Alonso-González; Carlos Martínez-Campa

Melatonin, the main secretory product of the pineal gland, is an oncostatic agent that reduces the growth and development of various types of tumors, particularly mammary tumors whose growth is dependent on estrogens. Previous in vivo and in vitro studies point to the hypothesis that melatonin interplays with estrogen signaling pathways at three different levels: i) an indirect mechanism, by interfering with the hypothalamic-pituitary-reproductive axis in such way that the level of plasma estrogens synthesized by the gonadal glands are downregulated; ii) a direct mechanism of the pineal gland at the cell cancer level, disrupting the activation of estradiol receptors, therefore behaving as a selective estrogen receptor modulator; and iii) by regulating the enzymes involved in the biosynthesis of estrogens in other tissues, thus behaving as a selective estrogen enzyme modulator. The intratumoral metabolism and synthesis of estrogens, as a result of the interactions of various enzymes, is more important than blood uptake to maintain mammary gland estrogen levels in menopausal females. Additionally, estrogens are considered to play an important role in the pathogenesis and development of hormone-dependent breast carcinoma. Paracrine interactions among malignant epithelial cells and proximal adipose and endothelial cells, through cytokines and growth factors produced by breast tumor cells, modulate estrogen production at the mammary tumor level and, as a consequence, the genesis and development of mammary tumors. The aim of the present review is to summarize the recent findings describing the mechanisms by which melatonin is able to modulate the crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer.


Oncology Reports | 2010

Inhibitory effects of melatonin on sulfatase and 17β-hydroxysteroid dehydrogenase activity and expression in glioma cells

Alicia González; Carlos Martínez-Campa; M. D. Mediavilla; Carolina Alonso-González; Virginia Alvarez-García; Emilio J. Sánchez-Barceló; Samuel Cos


Archive | 2013

Melatonin and Breast Cancer: Selective Estrogen Enzyme Modulator Actions

Samuel Cos; Alicia González; Virginia Alvarez-García; Carolina Alonso-González; Carlos Martínez-Campa

Collaboration


Dive into the Virginia Alvarez-García's collaboration.

Top Co-Authors

Avatar

Samuel Cos

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain J. P. Alix

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Erika Bourguet

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Janos Sapi

University of Reims Champagne-Ardenne

View shared research outputs
Researchain Logo
Decentralizing Knowledge