Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginie Doceul is active.

Publication


Featured researches published by Virginie Doceul.


Veterinary Research | 2013

Epidemiology, molecular virology and diagnostics of Schmallenberg virus, an emerging orthobunyavirus in Europe

Virginie Doceul; Estelle Lara; Corinne Sailleau; Guillaume Belbis; Jennifer Richardson; Emmanuel Bréard; Cyril Viarouge; Morgane Dominguez; Pascal Hendrikx; Didier Calavas; Alexandra Desprat; Jérôme Languille; Loic Comtet; Philippe Pourquier; Jean-François Eléouët; Bernard Delmas; Philippe Marianneau; Damien Vitour; Stéphan Zientara

After the unexpected emergence of Bluetongue virus serotype 8 (BTV-8) in northern Europe in 2006, another arbovirus, Schmallenberg virus (SBV), emerged in Europe in 2011 causing a new economically important disease in ruminants. The virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the United Kingdom, France, Italy, Luxembourg, Spain, Denmark and Switzerland. This review describes the current knowledge on the emergence, epidemiology, clinical signs, molecular virology and diagnosis of SBV infection.


Viruses | 2016

Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes

Virginie Doceul; Eugénie Bagdassarian; Antonin Demange; Nicole Pavio

During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources.


Journal of Virology | 2013

NS3 of Bluetongue virus interferes with the induction of type I interferon

Emilie Chauveau; Virginie Doceul; Estelle Lara; Emmanuel Bréard; Corinne Sailleau; Pierre-Olivier Vidalain; Eliane F. Meurs; Stéphanie Dabo; Isabelle Schwartz-Cornil; Stéphan Zientara; Damien Vitour

ABSTRACT Upon infection with Bluetongue virus (BTV), an arthropod-borne virus, type I interferon (IFN-I) is produced in vivo and in vitro. IFN-I is essential for the establishment of an antiviral cellular response, and most if not all viruses have elaborated strategies to counteract its action. In this study, we assessed the ability of BTV to interfere with IFN-I synthesis and identified the nonstructural viral protein NS3 as an antagonist of the IFN-I system.


Journal of Virology | 2012

Sensing and Control of Bluetongue Virus Infection in Epithelial Cells via RIG-I and MDA5 Helicases

Emilie Chauveau; Virginie Doceul; Estelle Lara; Micheline Adam; Emmanuel Bréard; Corinne Sailleau; Cyril Viarouge; Alexandra Desprat; Gilles Meyer; Isabelle Schwartz-Cornil; Suzana Ruscanu; Bernard Charley; Stéphan Zientara; Damien Vitour

ABSTRACT Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/β]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-β in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-β and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-β. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-β was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-β induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.


Virus Research | 2014

Induction and control of the type I interferon pathway by Bluetongue virus

Damien Vitour; Virginie Doceul; Suzana Ruscanu; Emilie Chauveau; Isabelle Schwartz-Cornil; Stéphan Zientara

Abstract The innate immune response is the first line of defence against viruses, involving the production of type I IFN (IFN-α/β) and other pro-inflammatory cytokines that control the infection. It also shapes the adaptive immune response generated by both T and B cells. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus. However, the mechanisms responsible for the production of IFN-β in response to BTV remained unknown until recently and are still not completely understood. In this review, we describe the recent advances in the identification of cellular sensors and signalling pathways involved in this process. The RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) were shown to be involved in the expression of IFN-β as well as in the control of BTV infection in non-haematopoietic cells. In contrast, induction of IFN-α/β synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). As type I IFN is essential for the establishment of an antiviral cellular response, most of viruses have elaborated counteracting mechanisms to hinder its action. This review also addresses the ability of BTV to interfere with IFN-β synthesis and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.


Journal of Virology | 2014

Dual modulation of type I interferon response by Bluetongue virus

Virginie Doceul; Emilie Chauveau; Estelle Lara; Emmanuel Bréard; Corinne Sailleau; Stéphan Zientara; Damien Vitour

ABSTRACT Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus that causes an economically important disease in ruminants. BTV infection is a strong inducer of type I interferon (IFN-I) in multiple cell types. It has been shown recently that BTV and, more specifically, the nonstructural protein NS3 of BTV are able to modulate the IFN-I synthesis pathway. However, nothing is known about the ability of BTV to counteract IFN-I signaling. Here, we investigated the effect of BTV on the IFN-I response pathway and, more particularly, the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. We found that BTV infection triggered the expression of IFN-stimulated genes (ISGs) in A549 cells. However, when BTV-infected cells were stimulated with external IFN-I, we showed that activation of the IFN-stimulated response element (ISRE) promoter and expression of ISGs were inhibited. We found that this inhibition involved two different mechanisms that were dependent on the time of infection. After overnight infection, BTV blocked specifically the phosphorylation and nuclear translocation of STAT1. This inhibition correlated with the redistribution of STAT1 in regions adjacent to the nucleus. At a later time point of infection, BTV was found to interfere with the activation of other key components of the JAK/STAT pathway and to induce the downregulation of JAK1 and TYK2 protein expression. Overall, our study indicates for the first time that BTV is able to interfere with the JAK/STAT pathway to modulate the IFN-I response. IMPORTANCE Bluetongue virus (BTV) causes a severe disease in ruminants and has an important impact on the livestock economy in areas of endemicity such as Africa. The emergence of strains, such as serotype 8 in Europe in 2006, can lead to important economic losses due to commercial restrictions and prophylactic measures. It has been known for many years that BTV is a strong inducer of type I interferon (IFN-I) in vitro and in vivo in multiple cell types. However, the ability of BTV to interact with the IFN-I system remains unclear. Here, we report that BTV is able to modulate the IFN-I response by interfering with the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. These findings contribute to knowledge of how BTV infection interferes with the hosts innate immune response and becomes pathogenic. This will also be important for the design of efficacious vaccine candidates.


Veterinary Microbiology | 2013

Evidence of transplacental transmission of bluetongue virus serotype 8 in goats

G. Belbis; Emmanuel Bréard; Nathalie Cordonnier; V. Moulin; Alexandra Desprat; Corinne Sailleau; Cyril Viarouge; Virginie Doceul; Stéphan Zientara; Yves Millemann

During the incursion of bluetongue virus (BTV) serotype 8 in Europe, an increase in the number of abortions in ruminants was observed. Transplacental transmission of BTV-8 in cattle and sheep, with subsequent foetal infection, is a feature of this specific bluetongue serotype. In this study, BTV-8 ability to cross the placental barrier at the beginning of the second third of pregnancy and at the end of pregnancy was investigated in goats in two separate experiments. In the first experiment, nine goats were experimentally infected with BTV-8 at 61 days of pregnancy. Foetuses were collected 21 dpi. BTV-8 was evidenced by real time RT-PCR and by viral isolation using blood from the umbilical cord and the spleens of 3 out of the 13 foetuses. All dams were viraemic (viral isolation) at the moment of sampling of the foetuses. Significant macroscopic or histological lesions could not be observed in foetuses or in their infected dams (notably at the placenta level). In the second experiment, 10 goats were infected with BTV-8 at 135 days of pregnancy. Kids were born by caesarean section at the programmed day of birth (15 dpi). BTV-8 could not be detected by rt-RT-PCR in blood or spleen samples from the kids. This study showed for the first time that BTV-8 transplacental transmission can occur in goats that have been infected at 61 days of pregnancy, with infectious virus recovered from the caprine foetuses. The observed transmission rate was quite high (33%) at this stage of pregnancy. However, it was not possible to demonstrate the existence of BTV-8 transplacental transmission when infection occurred at the end of the goat pregnancy.


Research in Veterinary Science | 2013

Epizootic hemorrhagic disease virus serotype 6 experimentation on adult cattle

Emmanuel Bréard; Guillaume Belbis; Cyril Viarouge; Mickaël Riou; Alexandra Desprat; Joël Moreau; Eve Laloy; Guillaume Martin; Pierre Sarradin; Damien Vitour; Carrie Batten; Virginie Doceul; Corinne Sailleau; Stéphan Zientara

Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus (family Reoviridae), is an emerging pathogen of wild and domestic ruminants closely related to bluetongue virus (BTV). EHDV serotype 6 (EHDV6) has recently caused outbreaks close to Europe in Turkey and Morocco and a recent experimental study performed on calves inoculated with these two EHDV6 strains showed that the young animals have remained clinically unaffected. The aim of this study was to investigate the pathogenicity of an EHDV6 strain from La Reunion Island in adult Holstein (18-month-old heifers). This EHDV6 strain has induced clinical signs in cattle in the field. Samples taken throughout the study were tested with commercially available ELISA and real-time RT-PCR kits. Very mild clinical manifestations were observed in cattle during the experiment although high levels of viral RNA and virus were found in their blood. EHDV was isolated from the blood of infected animals at 8 dpi. Antibodies against EHDV were first detected by 7 dpi and persisted up to the end of the study. Virus was detected in various tissue samples until 35 dpi, but was not infectious. In view of the recent circulation of different arboviruses in Europe, this study demonstrates what the EHD induces a strong viraemia in adult Holstein cattle and shows that a spread of EHD on European livestock cattle is possible.


Emerging Infectious Diseases | 2013

Acute Schmallenberg virus infections, France, 2012.

Corinne Sailleau; Emmanuel Bréard; Cyril Viarouge; Alexandra Desprat; Virginie Doceul; Estelle Lara; Jérôme Languille; Damien Vitour; Houssam Attoui; Stéphan Zientara

To the Editor: After unexpected emergence of bluetongue virus serotype 8 in northern Europe in 2006 (1), another arbovirus, Schmallenberg virus (SBV), which is transmitted by Culicoides spp. biting midges, emerged in Europe in 2011 and caused disease outbreaks among ruminants (2). Nonspecific clinical signs such as fever, decreased milk production, and diarrhea were associated with acute infection in cattle, and late abortions and birth defects in newborns were associated with infection of pregnant cows, ewes, and goats (2,3).


Transboundary and Emerging Diseases | 2015

Emergence of bluetongue virus serotype 1 in French Corsica Island in September 2013.

Corinne Sailleau; Cyril Viarouge; Emmanuel Bréard; J. B. Perrin; Virginie Doceul; Damien Vitour; Stéphan Zientara

Since 2000, French Corsica Island has been exposed to the emergence of three different BT virus (BTV) serotypes: serotype 2 in 2000 and 2001, serotype 4 in 2003 and serotype 16 in 2004. Between 2005 and August 2013, no outbreaks have been reported in the French Island. At the beginning of September 2013, sheep located in the south of the island showed clinical signs suggestive of BTV infection. Laboratory analyses identified the virus as BTV serotype 1. Phylogenetic studies showed that the sequences of this strain are closely related to the BTV-1 strain that was circulating in the Mediterranean basin and in Sardinia in 2012.

Collaboration


Dive into the Virginie Doceul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Schwartz-Cornil

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge