Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginie Gasciolli is active.

Publication


Featured researches published by Virginie Gasciolli.


Current Biology | 2005

Partially Redundant Functions of Arabidopsis DICER-like Enzymes and a Role for DCL4 in Producing trans-Acting siRNAs

Virginie Gasciolli; Allison C. Mallory; David P. Bartel; Hervé Vaucheret

Arabidopsis encodes four DICER-like (DCL) proteins. DCL1 produces miRNAs, DCL2 produces some virus-derived siRNAs, and DCL3 produces endogenous RDR2-dependent siRNAs, but the role of DCL4 is unknown. We show that DCL4 is the primary processor of endogenous RDR6-dependent trans-acting siRNAs (tasiRNAs). Molecular and phenotypic analyses of all dcl double mutants also revealed partially compensatory functions among DCL proteins. In the absence of DCL4, some RDR6-dependent siRNAs were produced by DCL2 and DCL3, and in the absence of DCL3, some RDR2-dependent siRNAs were produced by DCL2 and DCL4. Consistent with partial redundancies, dcl2 and dcl3 mutants developed normally, whereas dcl4 and dcl3 dcl4 mutants had weak and severe rdr6 phenotypes, respectively, and increased tasiRNA target mRNA accumulation. After three generations, dcl3 dcl4 and dcl2 dcl3 mutants exhibited stochastic developmental phenotypes, some of which were lethal, likely owing to the accumulated loss of heterochromatic siRNA-directed marks. dcl1 dcl3 and dcl1 dcl4, but not dcl1 dcl2 mutants, had phenotypes more severe than dcl1 mutants, consistent with DCL1, DCL3, and DCL4 acting as the primary processors of the three respective classes of endogenous silencing RNAs and DCL2 acting to produce viral-derived siRNAs and as an alternative DCL for endogenous siRNA production.


Current Biology | 2004

The Nuclear dsRNA Binding Protein HYL1 Is Required for MicroRNA Accumulation and Plant Development, but Not Posttranscriptional Transgene Silencing

Franck Vazquez; Virginie Gasciolli; Patrice Crété; Hervé Vaucheret

MicroRNAs (miRNAs) are 21-24 nucleotides long molecules processed from imperfect double-stranded RNAs (dsRNAs). They regulate gene expression by targeting complementary mRNA for cleavage or interfering with their translation. In Arabidopsis, point mutations in or short truncations of the nuclear DICER-LIKE1 (DCL1) or HEN1 protein reduce miRNA accumulation and increase uncleaved target mRNAs accumulation, resulting in developmental abnormalities. Here, we show that miRNA accumulation also depends on the activity of HYL1, a nuclear dsRNA binding protein. hyl1 mutants exhibit developmental defects overlapping with that of dcl1 and hen1 mutants, suggesting that DCL1, HEN1, and HYL1 act together in the nucleus. We validate additional target mRNAs and show that reduced miRNA accumulation in hyl1 correlates with an increased accumulation of uncleaved target mRNAs, including meristem- and auxin-related genes, providing clues for the developmental abnormalities of hyl1 and for the previous identification of hyl1 as a mutant with altered responses to phytohormones. Lastly, we show that posttranscriptional transgene silencing occurs in hyl1, suggesting that HYL1 has specialized function in the plant miRNA pathway, whereas the HYL1-related RDE-4 and R2D2 proteins associate with DICER in the cytoplasm and act in the RNAi pathway in C. elegans and Drosophila, respectively.


Current Biology | 2006

DRB4-Dependent TAS3 trans-Acting siRNAs Control Leaf Morphology through AGO7

Xavier Adenot; Taline Elmayan; Dominique Lauressergues; Stéphanie Boutet; Nicolas Bouché; Virginie Gasciolli; Hervé Vaucheret

trans-acting siRNAs (ta-siRNAs) are endogenous RNAs that direct the cleavage of complementary mRNA targets . TAS gene transcripts are cleaved by miRNAs; the cleavage products are protected against degradation by SGS3, copied into dsRNA by RDR6, and diced into ta-siRNAs by DCL4 . We describe hypomorphic rdr6 and sgs3 Arabidopsis mutants, which do not exhibit the leaf developmental defects observed in null mutants and which, like null alleles, are impaired in sense-transgene-induced posttranscriptional gene silencing and virus resistance. Null rdr6 and sgs3 mutants lack TAS1, TAS2, and TAS3 ta-siRNAs and overaccumulate ARF3/ETTIN and ARF4 mRNAs, which are TAS3 ta-siRNA targets. A hypomorphic rdr6 mutant accumulates wild-type TAS3 ta-siRNA levels but not TAS1 and TAS2 ta-siRNAs, suggesting that TAS3 is required for proper leaf development. Consistently, tas3 but not tas1 or tas2 mutants exhibits leaf morphology defects, and ago7/zip and drb4 mutants, which exhibit leaf morphology defects, lack TAS3 but not TAS1 and TAS2 ta-siRNAs in leaves. These results indicate that the dsRNA binding protein DRB4 is required for proper ta-siRNA production, presumably by interacting with DCL4, an interaction analogous to that of HYL1 with DCL1 during miRNA production , and that TAS3 ta-siRNAs are required for proper leaf development through the action of AGO7/ZIPPY.


The EMBO Journal | 2006

An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs

Nicolas Bouché; Dominique Lauressergues; Virginie Gasciolli; Hervé Vaucheret

Plants contain more DICER‐LIKE (DCL) enzymes and double‐stranded RNA binding (DRB) proteins than other eukaryotes, resulting in increased small RNA network complexities. Analyses of single, double, triple and quadruple dcl mutants exposed DCL1 as a sophisticated enzyme capable of producing both microRNAs (miRNAs) and siRNAs, unlike the three other DCLs, which only produce siRNAs. Depletion of siRNA‐specific DCLs results in unbalanced small RNA levels, indicating a redeployment of DCL/DRB complexes. In particular, DCL2 antagonizes the production of miRNAs and siRNAs by DCL1 in certain circumstances and affects development deleteriously in dcl1 dcl4 and dcl1 dcl3 dcl4 mutant plants, whereas dcl1 dcl2 dcl3 dcl4 quadruple mutant plants are viable. We also show that viral siRNAs are produced by DCL4, and that DCL2 can substitute for DCL4 when this latter activity is reduced or inhibited by viruses, pointing to the competitiveness of DCL2. Given the complexity of the small RNA repertoire in plants, the implication of each DCL, in particular DCL2, in the production of small RNAs that have no known function will constitute one of the next challenges.


The Plant Cell | 2011

The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana

Xianbing Wang; Juan Jovel; Petchthai Udomporn; Ying Wang; Qingfa Wu; Wan-Xiang Li; Virginie Gasciolli; Hervé Vaucheret; Shou-Wei Ding

This work identifies cooperative action of ARGONAUTE1 and ARGONAUTE2 in virus resistance conferred by 21-nucleotide virus-derived small interfering RNAs (siRNAs). It also reveals that 22-nucleotide viral siRNAs do not guide efficient antiviral defense, demonstrating a qualitative difference between 21- and 22-nucleotide classes of siRNAs in RNA silencing. Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed.


The Plant Cell | 2007

Arabidopsis FIERY1, XRN2, and XRN3 Are Endogenous RNA Silencing Suppressors

Isabelle Gy; Virginie Gasciolli; Dominique Lauressergues; Jean-Benoit Morel; Julie Gombert; Florence Proux; Caroline Proux; Hervé Vaucheret; Allison C. Mallory

The eukaryotic defense response posttranscriptional gene silencing (PTGS) is directed by short-interfering RNAs and thwarts invading nucleic acids via the RNA slicing activity of conserved ARGONAUTE (AGO) proteins. PTGS can be counteracted by exogenous or endogenous suppressors, including the cytoplasmic exoribonuclease XRN4, which also degrades microRNA (miRNA)-guided mRNA cleavage products but does not play an obvious role in development. Here, we show that the nuclear exoribonucleases XRN2 and XRN3 are endogenous PTGS suppressors. We also identify excised MIRNA loops as templates for XRN2 and XRN3 and show that XRN3 is critical for proper development. Independently, we identified the nucleotidase/phosphatase FIERY1 (FRY1) as an endogenous PTGS suppressor through a suppressor screen in a hypomorphic ago1 genetic background. FRY1 is one of six Arabidopsis thaliana orthologs of yeast Hal2. Yeast hal2 mutants overaccumulate 3′-phosphoadenosine 5′-phosphate, which suppresses the 5′→3′ exoribonucleases Xrn1 and Rat1. fry1 mutant plants recapitulate developmental and molecular characteristics of xrn mutants and likely restore PTGS in ago1 hypomorphic mutants by corepressing XRN2, XRN3, and XRN4, thus increasing RNA silencing triggers. We anticipate that screens incorporating partially compromised silencing components will uncover additional PTGS suppressors that may not be revealed using robust silencing systems.


PLOS Genetics | 2009

Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing

Allison C. Mallory; Annika Hinze; Matthew R. Tucker; Nicolas Bouché; Virginie Gasciolli; Taline Elmayan; Dominique Lauressergues; Vincent Jauvion; Hervé Vaucheret; Thomas Laux

The Arabidopsis ARGONAUTE1 (AGO1) and ZWILLE/PINHEAD/AGO10 (ZLL) proteins act in the miRNA and siRNA pathways and are essential for multiple processes in development. Here, we analyze what determines common and specific function of both proteins. Analysis of ago1 mutants with partially compromised AGO1 activity revealed that loss of ZLL function re-establishes both siRNA and miRNA pathways for a subset of AGO1 target genes. Loss of ZLL function in ago1 mutants led to increased AGO1 protein levels, whereas AGO1 mRNA levels were unchanged, implicating ZLL as a negative regulator of AGO1 at the protein level. Since ZLL, unlike AGO1, is not subjected to small RNA-mediated repression itself, this cross regulation has the potential to adjust RNA silencing activity independent of feedback dynamics. Although AGO1 is expressed in a broader pattern than ZLL, expression of AGO1 from the ZLL promoter restored transgene PTGS and most developmental defects of ago1, whereas ZLL rescued only a few AGO1 functions when expressed from the AGO1 promoter, suggesting that the specific functions of AGO1 and ZLL are mainly determined by their protein sequence. Protein domain swapping experiments revealed that the PAZ domain, which in AGO1 is involved in binding small RNAs, is interchangeable between both proteins, suggesting that this common small RNA-binding domain contributes to redundant functions. By contrast, the conserved MID and PIWI domains, which are involved in 5′-end small RNA selectivity and mRNA cleavage, and the non-conserved N-terminal domain, to which no function has been assigned, provide specificity to AGO1 and ZLL protein function.


Trends in Plant Science | 2008

Unexpected silencing effects from T-DNA tags in Arabidopsis

Lucia Daxinger; Ben Hunter; Mazhar Sheikh; Vincent Jauvion; Virginie Gasciolli; Hervé Vaucheret; Marjori Matzke; Ian J. Furner

H.V., V.J. and V.G. would like to thank Allison Mallory for assistance with northern blotting procedures. I.F. thanks the Biology and Biotechnology Research Council (BBSRC) and the Gatsby Charitable Foundation for financial support and Emma Wigmore and Sean May at Nottingham Arabidopsis Stock Centre (NASC) for many seed stocks.


ACS Chemical Biology | 2013

Lipo-chitooligosaccharidic Symbiotic Signals Are Recognized by LysM Receptor-Like Kinase LYR3 in the Legume Medicago truncatula

Judith Fliegmann; Sophie Canova; Christophe Lachaud; Sandra Uhlenbroich; Virginie Gasciolli; Carole Pichereaux; Michel Rossignol; Charles Rosenberg; Marie Cumener; Delphine Pitorre; Benoit Lefebvre; Clare Gough; Eric Samain; Sébastien Fort; Hugues Driguez; Boris Vauzeilles; Jean-Marie Beau; Alessandra Nurisso; Anne Imberty; Julie V. Cullimore; Jean-Jacques Bono

While chitooligosaccharides (COs) derived from fungal chitin are potent elicitors of defense reactions, structurally related signals produced by certain bacteria and fungi, called lipo-chitooligosaccharides (LCOs), play important roles in the establishment of symbioses with plants. Understanding how plants distinguish between friend and foe through the perception of these signals is a major challenge. We report the synthesis of a range of COs and LCOs, including photoactivatable probes, to characterize a membrane protein from the legume Medicago truncatula. By coupling photoaffinity labeling experiments with proteomics and transcriptomics, we identified the likely LCO-binding protein as LYR3, a lysin motif receptor-like kinase (LysM-RLK). LYR3, expressed heterologously, exhibits high-affinity binding to LCOs but not COs. Homology modeling, based on the Arabidopsis CO-binding LysM-RLK AtCERK1, suggests that LYR3 could accommodate the LCO in a conserved binding site. The identification of LYR3 opens up ways for the molecular characterization of LCO/CO discrimination.


Journal of Biological Chemistry | 2012

Role of N-Glycosylation sites and CXC motifs in trafficking of Medicago truncatula Nod factor perception protein to plasma membrane

Benoit Lefebvre; Doerte Klaus-Heisen; Anna Pietraszewska-Bogiel; Christine Hervé; Sylvie Camut; Marie-Christine Auriac; Virginie Gasciolli; Alessandra Nurisso; Theodorus W. J. Gadella; Julie V. Cullimore

Background: Nod factor perception (NFP) protein is a plant, lysin motif receptor-like kinase. Results: Disulfide bridges that connect the three extracellular lysin motifs and the intracellular dead-kinase domain are essential for NFP function. Conclusion: Post-translational modifications are required for NFP folding, trafficking, and functioning. Significance: Structural information will help to determine NFP biochemical function. The lysin motif receptor-like kinase, NFP (Nod factor perception), is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic analyses strongly suggest that NFP is at least part of a Nod factor receptor, but few data are available about this protein. Characterization of a variant encoded by the mutant allele nfp-2 revealed the sensitivity of this protein to the endoplasmic reticulum quality control mechanisms, affecting its trafficking to the plasma membrane. Further analysis revealed that the extensive N-glycosylation of the protein is not essential for biological activity. In the NFP extracellular region, two CXC motifs and two other Cys residues were found to be involved in disulfide bridges, and these are necessary for correct folding and localization of the protein. Analysis of the intracellular region revealed its importance for biological activity but suggests that it does not rely on kinase activity. This work shows that NFP trafficking to the plasma membrane is highly sensitive to regulation in the endoplasmic reticulum and has identified structural features of the protein, particularly disulfide bridges involving CXC motifs in the extracellular region that are required for its biological function.

Collaboration


Dive into the Virginie Gasciolli's collaboration.

Top Co-Authors

Avatar

Hervé Vaucheret

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Allison C. Mallory

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christophe Lachaud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie Cumener

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Bouché

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nikita Malkov

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Benoit Lefebvre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Charles Rosenberg

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge