Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginijus Valiunas is active.

Publication


Featured researches published by Virginijus Valiunas.


Circulation Research | 2004

Human Mesenchymal Stem Cells as a Gene Delivery System to Create Cardiac Pacemakers

Irina A. Potapova; Alexei N. Plotnikov; Zhongju Lu; Peter Danilo; Virginijus Valiunas; Jihong Qu; Sergey V. Doronin; Joan Zuckerman; Iryna N. Shlapakova; Junyuan Gao; Zongming Pan; Alan J. Herron; Richard B. Robinson; Peter R. Brink; Michael R. Rosen; Ira S. Cohen

Abstract— We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1±3.8 pA/pF at −150 mV) activating in the diastolic potential range with reversal potential of −37.5±1.0 mV, confirming the expressed current as If-like. The expressed current responded to isoproterenol with an 11-mV positive shift in activation. Acetylcholine had no direct effect, but in the presence of isoproterenol, shifted activation 15 mV negative. Transfected hMSCs influenced beating rate in vitro when plated onto a localized region of a coverslip and overlaid with neonatal rat ventricular myocytes. The coculture beating rate was 93±16 bpm when hMSCs were transfected with control plasmid (expressing only EGFP) and 161±4 bpm when hMSCs were expressing both EGFP+mHCN2 (P <0.05). We next injected 10 6 hMSCs transfected with either control plasmid or mHCN2 gene construct subepicardially in the canine left ventricular wall in situ. During sinus arrest, all control (EGFP) hearts had spontaneous rhythms (45±1 bpm, 2 of right-sided origin and 2 of left). In the EGFP+mHCN2 group, 5 of 6 animals developed spontaneous rhythms of left-sided origin (rate=61±5 bpm; P <0.05). Moreover, immunostaining of the injected regions demonstrated the presence of hMSCs forming gap junctions with adjacent myocytes. These findings demonstrate that genetically modified hMSCs can express functional HCN2 channels in vitro and in vivo, mimicking overexpression of HCN2 genes in cardiac myocytes, and represent a novel delivery system for pacemaker genes into the heart or other electrical syncytia.


The Journal of Physiology | 2005

Connexin‐specific cell‐to‐cell transfer of short interfering RNA by gap junctions

Virginijus Valiunas; Yaroslava Y. Polosina; Heather B Miller; Irina A. Potapova; Laima Valiuniene; Sergey V. Doronin; Richard T. Mathias; Richard B. Robinson; Michael R. Rosen; Ira S. Cohen; Peter R. Brink

The purpose of this study was to determine whether oligonucleotides the size of siRNA are permeable to gap junctions and whether a specific siRNA for DNA polymerase β (pol β) can move from one cell to another via gap junctions, thus allowing one cell to inhibit gene expression in another cell directly. To test this hypothesis, fluorescently labelled oligonucleotides (morpholinos) 12, 16 and 24 nucleotides in length were synthesized and introduced into one cell of a pair using a patch pipette. These probes moved from cell to cell through gap junctions composed of connexin 43 (Cx43). Moreover, the rate of transfer declined with increasing length of the oligonucleotide. To test whether siRNA for pol β was permeable to gap junctions we used three cell lines: (1) NRK cells that endogenously express Cx43; (2) Mβ16tsA cells, which express Cx32 and Cx26 but not Cx43; and (3) connexin‐deficient N2A cells. NRK and Mβ16tsA cells were each divided into two groups, one of which was stably transfected to express a small hairpin RNA (shRNA), which gives rise to siRNA that targets pol β. These two pol β knockdown cell lines (NRK‐kcdc and Mβ16tsA‐kcdc) were co‐cultured with labelled wild type, NRK‐wt or Mβ16tsA‐wt cells or N2A cells. The levels of pol β mRNA and protein were determined by semiquantitative RT‐PCR and immunoblotting. Co‐culture of Mβ16tsA‐kcdc cells with Mβ16tsA‐wt, N2A or NRK‐wt cells had no effect on pol β levels in these cells. Similarly, co‐culture of NRK‐kcdc with N2A cells had no effect on pol β levels in the N2A cells. In contrast, co‐culture of NRK‐kcdc with NRK‐wt cells resulted in a significant reduction in pol β in the wt cells. The inability of Mβ16tsA‐kcdc cells to transfer siRNA is consistent with the fact that oligonucleotides of the 12 nucleotide length were not permeable to Cx32/Cx26 channels. This suggested that Cx43 but not Cx32/Cx26 channels allowed the cell‐to‐cell movement of the siRNA. These results support the novel hypothesis that non‐hybridized and possible hybridized forms of siRNA can move between mammalian cells through connexin‐specific gap junctions.


The Journal of Physiology | 2004

Human mesenchymal stem cells make cardiac connexins and form functional gap junctions

Virginijus Valiunas; Sergey V. Doronin; Laima Valiuniene; Irina A. Potapova; Joan Zuckerman; Benjamin Walcott; Richard B. Robinson; Michael R. Rosen; Peter R. Brink; Ira S. Cohen

Human mesenchymal stem cells (hMSCs) are a multipotent cell population with the potential to be a cellular repair or delivery system provided that they communicate with target cells such as cardiac myocytes via gap junctions. Immunostaining revealed typical punctate staining for Cx43 and Cx40 along regions of intimate cell‐to‐cell contact between hMSCs. The staining patterns for Cx45 rather were typified by granular cytoplasmic staining. hMSCs exhibited cell‐to‐cell coupling to each other, to HeLa cells transfected with Cx40, Cx43 and Cx45 and to acutely isolated canine ventricular myocytes. The junctional currents (Ij) recorded between hMSC pairs exhibited quasi‐symmetrical and asymmetrical voltage (Vj) dependence. Ij records from hMSC–HeLaCx43 and hMSC–HeLaCx40 cell pairs also showed symmetrical and asymmetrical Vj dependence, while hMSC–HeLaCx45 pairs always produced asymmetrical Ij with pronounced Vj gating when the Cx45 side was negative. Symmetrical Ij suggests that the dominant functional channel is homotypic, while the asymmetrical Ij suggests the activity of another channel type (heterotypic, heteromeric or both). The hMSCs exhibited a spectrum of single channels with transition conductances (γj) of 30–80pS. The macroscopic Ij obtained from hMSC–cardiac myocyte cell pairs exhibited asymmetrical Vj dependence, while single channel events revealed γj of the size range 40–100pS. hMSC coupling via gap junctions to other cell types provides the basis for considering them as a therapeutic repair or cellular delivery system to syncytia such as the myocardium.


Circulation Research | 2002

Cardiac Gap Junction Channels Show Quantitative Differences in Selectivity

Virginijus Valiunas; Eric C. Beyer; Peter R. Brink

Several proteins including connexin40 (Cx40) and connexin43 (Cx43) form gap junctions between cells of the heart; they may be found separately or may be coexpressed. These connexins form channels with differing conductance and permeability properties. Cx40 and Cx43 are each required for normal electrical conduction between cells in different regions of the heart. We hypothesized that the major difference between these connexins might be in their selective intercellular passage of small molecules such as second messengers, which can be assessed using biologically inert fluorescent probes. Therefore, we designed experimental paradigms to quantitate the permeability properties of these cardiac connexins using simultaneous measurement of junctional conductance (gj) by the double whole-cell patch-clamp technique and intercellular transfer of Lucifer Yellow (LY) by fluorescence microscopy. These studies were performed in HeLa cells stably transfected with Cx40 or Cx43 or cotransfected with both connexins. We found that homotypic Cx43 channels were about 5 times more permeable to LY than homotypic Cx40 channels (flux of ≈1560 versus ≈300 molecules/channel per second). Channels between heterotypic (Cx40-Cx43) cell pairs and between pairs of coexpressing cells exhibited intermediate LY permeability. The permeability ratio for LY relative to monovalent cation (K+) ranged from 0.0025 for Cx40 to 0.028 for Cx43. These permeability ratios suggest that the connexins are highly selective for solutes in the size and charge range of many second messengers. Moreover, the data indicate that coexpression of connexins does not generate unique permeability characteristics, but rather results in an intermediate permeability for solutes involved in metabolic/biochemical coupling.


Circulation-arrhythmia and Electrophysiology | 2011

Stimulating Cardiac Muscle by Light: Cardiac Optogenetics by Cell Delivery

Zhiheng Jia; Virginijus Valiunas; Zongju Lu; Harold Bien; Huilin Liu; Hong-Zhang Wang; Barbara Rosati; Peter R. Brink; Ira S. Cohen; Emilia Entcheva

Background— After the recent cloning of light-sensitive ion channels and their expression in mammalian cells, a new field, optogenetics, emerged in neuroscience, allowing for precise perturbations of neural circuits by light. However, functionality of optogenetic tools has not been fully explored outside neuroscience, and a nonviral, nonembryogenesis-based strategy for optogenetics has not been shown before. Methods and Results— We demonstrate the utility of optogenetics to cardiac muscle by a tandem cell unit (TCU) strategy, in which nonexcitable cells carry exogenous light-sensitive ion channels, and, when electrically coupled to cardiomyocytes, produce optically excitable heart tissue. A stable channelrhodopsin2 (ChR2)-expressing cell line was developed, characterized, and used as a cell delivery system. The TCU strategy was validated in vitro in cell pairs with adult canine myocytes (for a wide range of coupling strengths) and in cardiac syncytium with neonatal rat cardiomyocytes. For the first time, we combined optical excitation and optical imaging to capture light-triggered muscle contractions and high-resolution propagation maps of light-triggered electric waves, found to be quantitatively indistinguishable from electrically triggered waves. Conclusions— Our results demonstrate feasibility to control excitation and contraction in cardiac muscle by light, using the TCU approach. Optical pacing in this case uses less energy, offers superior spatiotemporal control and remote access and can serve not only as an elegant tool in arrhythmia research but may form the basis for a new generation of light-driven cardiac pacemakers and muscle actuators. The TCU strategy is extendable to (nonviral) stem cell therapy and is directly relevant to in vivo applications.Background— After the recent cloning of light-sensitive ion channels and their expression in mammalian cells, a new field, optogenetics, emerged in neuroscience, allowing for precise perturbations of neural circuits by light. However, functionality of optogenetic tools has not been fully explored outside neuroscience, and a nonviral, nonembryogenesis-based strategy for optogenetics has not been shown before.nnMethods and Results— We demonstrate the utility of optogenetics to cardiac muscle by a tandem cell unit (TCU) strategy, in which nonexcitable cells carry exogenous light-sensitive ion channels, and, when electrically coupled to cardiomyocytes, produce optically excitable heart tissue. A stable channelrhodopsin2 (ChR2)-expressing cell line was developed, characterized, and used as a cell delivery system. The TCU strategy was validated in vitro in cell pairs with adult canine myocytes (for a wide range of coupling strengths) and in cardiac syncytium with neonatal rat cardiomyocytes. For the first time, we combined optical excitation and optical imaging to capture light-triggered muscle contractions and high-resolution propagation maps of light-triggered electric waves, found to be quantitatively indistinguishable from electrically triggered waves.nnConclusions— Our results demonstrate feasibility to control excitation and contraction in cardiac muscle by light, using the TCU approach. Optical pacing in this case uses less energy, offers superior spatiotemporal control and remote access and can serve not only as an elegant tool in arrhythmia research but may form the basis for a new generation of light-driven cardiac pacemakers and muscle actuators. The TCU strategy is extendable to (nonviral) stem cell therapy and is directly relevant to in vivo applications.


Journal of Cell Science | 2004

Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells

Joanna Gemel; Virginijus Valiunas; Peter R. Brink; Eric C. Beyer

Many cells contain two (or more) gap junction proteins that are able to oligomerize with each other to form heteromeric gap junction channels and influence the properties of intercellular communication. Cx26 and Cx43 are found together in a number of cell types, but previous data have suggested that they might not form heteromeric connexons. We studied the possible interactions of these connexins by co-expression in three different cell lines. Analysis of N2aCx26/Cx43 cell pairs by double whole-cell patch-clamp methods showed that these cells were coupled, but contained only a small number of sizes of single channels consistent with those formed by homomeric Cx26 or Cx43 channels. Immunofluorescence studies showed that both connexins localized to appositional membranes, but in largely distinct domains. Analysis of Triton X-100-solubilized connexons from co-expressing cells by centrifugation through sucrose gradients or by affinity purification using a Ni-NTA column showed no evidence of mixing of Cx26 and Cx43. These results contrast with our observations in cells co-expressing other connexins with Cx43 and suggest that Cx26 and Cx43 do not form heteromeric hemichannels. Moreover, the incorporation of Cx26 and Cx43 into oligomers and into the membrane were similarly affected by treatment of co-expressing cells with brefeldin A or nocodazole, suggesting that the lack of mixing is due to incompatibility of these connexins, not to differences in biosynthetic trafficking.


Molecular Biology of the Cell | 2011

The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome

Gülistan Meşe; Caterina Sellitto; Leping Li; Hong-Zhan Wang; Virginijus Valiunas; Gabriele Richard; Peter R. Brink; Thomas W. White

Dominant Cx26 mutations that cause keratitis-ichthyosis-deafness syndrome (KIDS) show increased hemichannel activity. Transgenic expression of these mutations recapitulates human skin disease in mice. Excess hemichannel activity persists in diseased epidermis from the transgenic mice. Thus hemichannel activity may be a novel therapeutic target in the treatment of KIDS.


Cancer Research | 2004

Normal cells control the growth of neighboring transformed cells independent of gap junctional communication and SRC activity.

David B. Alexander; Hitoshi Ichikawa; John F. Bechberger; Virginijus Valiunas; Misao Ohki; Christian C. Naus; Takehiko Kunimoto; Hiroyuki Tsuda; W. Todd Miller; Gary S. Goldberg

The growth of many types of cancer cells can be controlled by surrounding normal cells. However, mechanisms underlying this phenomenon have not been defined. We used a layered culture system to investigate how nontransformed cells suppress the growth of neighboring transformed cells. Direct physical contact between transformed and nontransformed cells was required for growth suppression of transformed cells in this system; communication by diffusible factors was not sufficient. However, significant gap junctional communication was not required, indicating that other intercellular junctions mediated this growth regulatory response. We also report that the Src kinase activity in transformed cells was not directly inhibited by contact with nontransformed cells. Instead, nontransformed cells increased the expression of serum deprivation-response protein and the transcription factor four and a half LIM domain 1 in tumor cells. In addition, these results suggest mechanisms by which normal cells may block Wnt signaling, inhibit insulin-like growth factor activity, and promote host recognition of neighboring tumor cells.


Cell Communication and Adhesion | 2001

Heteromeric Mixing of Connexins: Compatibility of Partners and Functional Consequences

Eric C. Beyer; Joanna Gemel; Agustín D. Martínez; Viviana M. Berthoud; Virginijus Valiunas; Alonso P. Moreno; Peter R. Brink

Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.


Biochimica et Biophysica Acta | 2012

Can gap junctions deliver

Peter R. Brink; Virginijus Valiunas; Chris Gordon; Michael R. Rosen; Ira S. Cohen

In vivo delivery of small interfering RNAs (siRNAs) to target cells via the extracellular space has been hampered by dilution effects and immune responses. Gap junction-mediated transfer between cells avoids the extracellular space and its associated limitations. Because of these advantages cell based delivery via gap junctions has emerged as a viable alternative for siRNA or miRNA delivery. Here we discuss the advantages and disadvantages of extracellular delivery and cell to cell delivery via gap junction channels composed of connexins. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.

Collaboration


Dive into the Virginijus Valiunas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giedrius Kanaporis

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge